
TMQUEUE(8) i

TMQUEUE(8)



TMQUEUE(8) ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



TMQUEUE(8) iii

Contents

1 SYNOPSIS 1

2 DESCRIPTION 2

3 OPTIONS 4

4 EXIT STATUS 5

5 BUGS 6

6 SEE ALSO 7

7 AUTHOR 8

8 COPYING 9



TMQUEUE(8) 1 / 9

Chapter 1

SYNOPSIS

tmqueue [OPTIONS]



TMQUEUE(8) 2 / 9

Chapter 2

DESCRIPTION

This is special ATMI server which is used for transactional persistent queue operations. tmqueue is backend server used by
tpenqueue() and tpdequeue() calls. Queue server works in pair with tmsrv instance, where both tmqueue and tmsrv are configured
in XA environment which uses NDRX_XA_RMLIB=libndrxxaqdisk.so and NDRX_XA_DRIVERLIB=libndrxxaqdisks.so(static
registration driver) or NDRX_XA_DRIVERLIB=libndrxxaqdiskd.so(dynamic registration driver). Each message basically is file
in file-system which synchronously is kept in queue server’s memory. The files in file system are staged between active, prepared
and committed states. During the active and prepared stages messages are made after the XA transaction ID (with sequence
number after dash). when message is committed, it is stored in committed folder, where file name contains the actual message id.
This infrastructure also is used for issuing XA commands which does the remove and update of the message i.e. at the commit
moment command files are used to update/remove committed message.

The folder where to store the processing qspace files are NDRX_XA_OPEN_STR and NDRX_XA_CLOSE_STR environment
variables. You may combine multiple instances of tmqueue for the same qspace, but it is recommended to keep qspace folders
different. However, it shall also work with same folder.

The queue server internally uses thread pools for handling the work. Multiple thread pools are used to avoid the deadlocking
where internal processing might do the XA driver calls which in the end sends notifications to the same server back.

Three thread-pools are used:

1) First one is for accepting the ATMI tpcall() requests.

2) Second thread pool is used by forward services (which basically are senders for automatic queues).

3) Third thread pool is used by notifications received from transaction manager ™. TM notifies the queue server for completion
(commit) of the message. So that tmqueue can unlock the message in memory.

Every instance of tmqueue will advertise following list of services:

1. @TMQ-<Cluster Node ID>-<Server ID>

2. @QSP<Queue space>

For example for Queue Space MYSPACE, Cluster Node ID 6, Enduro/X Server ID 100 services will look like:

1. @TMQ-6-100

2. @QSPMYSPACE

The automatic forwarder pool, ever configured time, will scan the automatic queues for non-locked messages. Once such message
is found, the message is submitted for worker thread. The worker thread will do the synchronous call to target server (srvnm
from q.conf ), wait for answer and either update tries counter or remove the message if succeed. If message is submitted with
TPQREPLYQ then on success, the response message from invoked service is submitted to reply queue. If message destination
service fails for number of attempts, then message is forwarded to TPQFAILUREQ, in this case original TPQCTL is preserved.

During the startup, tmqueue will try to read from disk the messages, if there are any committed prepared.



TMQUEUE(8) 3 / 9

The tpenqueue() and tpdequeue() can be invoked either as part of the global transaction or not. If global transaction is not used,
then tmqueue will open the transactions internally.

For more usage of the persistent queues, configuration, command line and codding samples, see atmitests/test028_tmq folder.



TMQUEUE(8) 4 / 9

Chapter 3

OPTIONS

-m QUEUE_SPACE
The name of the queue space.

-q QUEUE_CONFIG
This either full or relative path to the queue definition file (see q.conf(5) for more info on syntax. When changes are done
in this file, it is possible to reload the configuration during the runtime, with xadmin mqrc command. Note that queues are
not removed, but changed or added.

[-s SCAN_TIME]
This time in seconds used by main forwarder thread to scan for any automatic messages to be submitted for processing.

[-p SERVICE_THREAD_POOL_SIZE]
This is thread pool size of used for tpenqueue(), tpdequeue() serving. Also this thread pool is utilized by xadmin mqX
commands. Default is 10.

[-u NOTIFY_THREAD_POOL_SIZE]
This is number of threads which are processing callbacks from XA driver (for operation completion notifications).

[-f NOTIFY_THREAD_POOL_SIZE]
This is number of worker threads for forwarder. Default value is 10.

[-t XA_TRANSACTION_TIMEOUT]
Maximum number of seconds to wait for XA transaction to be completed. This used internally when global transactions
are not used. Default is 30.

[-m BACKGROUND_TRIES]
Maximum number of attempts to process locked transaction. Tries counter is increased by -s scan time steps. If tries count
is reached, transaction becomes stalled. And it can be force re-attempted manually from xadmin only xadmin commit or
xadmin abort for example. Default is 100.

[-c TIMEOUT_TEST_TIME]
Number of seconds by which run periodical scans of the expired transactions. Default is 1.



TMQUEUE(8) 5 / 9

Chapter 4

EXIT STATUS

0
Success

1
Failure



TMQUEUE(8) 6 / 9

Chapter 5

BUGS

Report bugs to madars.vitolins@gmail.com

mailto:madars.vitolins@gmail.com


TMQUEUE(8) 7 / 9

Chapter 6

SEE ALSO

xadmin(8) q.conf(5)



TMQUEUE(8) 8 / 9

Chapter 7

AUTHOR

Enduro/X is created by Madars Vitolins.



TMQUEUE(8) 9 / 9

Chapter 8

COPYING

© Mavimax, Ltd


	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	BUGS
	SEE ALSO
	AUTHOR
	COPYING

