
VIEWFILE(5) i

VIEWFILE(5)

VIEWFILE(5) ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

VIEWFILE(5) iii

Contents

1 SYNOPSIS 1

2 DESCRIPTION 3

3 VIEW FILE ELEMENTS 4

4 VIEW FLAGS 5

5 EXAMPLE 6

6 BUGS 7

7 SEE ALSO 8

8 COPYING 9

VIEWFILE(5) 1 / 9

Chapter 1

SYNOPSIS

Formal specification:

First view in the file
VIEW VIEWNAME

FLD_TYPE C_NAME UBF_NAME COUNT FLAGS SIZE NULL_VAL
...
FLD_TYPE_N C_NAME_N UBF_NAME_N COUNT_N FLAGS_N SIZE_N NULL_VAL_N

END

...

N view in the view file
VIEW VIEWNAME_N

...

END

Example view: (test.v):

VIEW MYVIEW1
#type cname fbname count flag size null

short tshort1 T_SHORT_FLD 1 FS - 2000
short tshort2 T_SHORT_2_FLD 2 FSC - 2001
short tshort3 T_SHORT_3_FLD 3 FSC - -
short tshort4 - 1 N - NONE

long tlong1 T_LONG_FLD 1 FS - 0
int tint2 T_LONG_2_FLD 2 FS - 0
int tint3 - 1 - - -1
int tint4 - 2 - - -1

char tchar1 T_CHAR_FLD 1 F - ’\n’
char tchar2 T_CHAR_2_FLD 5 SC - ’A’
char tchar3 T_CHAR_3_FLD 2 CN - -

float tfloat1 T_FLOAT_FLD 4 FS - 1.1
float tfloat2 T_FLOAT_2_FLD 2 S - -
float tfloat3 - 1 N - 9999.99

double tdouble1 T_DOUBLE_FLD 2 FS - 55555.99

VIEWFILE(5) 2 / 9

double tdouble2 T_DOUBLE_2_FLD 1 F - -999.123

string tstring0 - 3 - 18 ’\n\t\f\\\’\"\vHELLOWORLD’
string tstring1 T_STRING_FLD 3 FSP 20 ’HELLO WORLDB’
string tstring2 T_STRING_2_FLD 3 FCL 20 -
string tstring3 T_STRING_3_FLD 4 FSCL 20 ’TESTEST’
string tstring4 - 1 P 15 ’HELLO TEST’
string tstring5 - 1 - 15 ’MEGA TEST’

carray tcarray1 T_CARRAY_FLD 1 FS 30 ’\0\n\t\f\\\’\"\vHELLOWORLD ←↩
’

carray tcarray2 T_CARRAY_2_FLD 1 LFSP 25 ’\0\n\t\f\\\’\"\vHELLOWORL\ ←↩
n’

carray tcarray3 T_CARRAY_3_FLD 10 FSCLP 30 ’\0\\\nABC\t\f\’\vHELLO’
carray tcarray4 - 1 - 5 ’ABC’
carray tcarray5 - 1 - 5 -

END

Compiled header output (C language mode):

struct MYVIEW1 {
short tshort1; /* null=2000 */
short C_tshort2;
short tshort2[2]; /* null=2001 */
short C_tshort3;
short tshort3[3];
short tshort4; /* null=NONE */
long tlong1; /* null=0 */
int tint2[2]; /* null=0 */
int tint3; /* null=-1 */
int tint4[2]; /* null=-1 */
char tchar1; /* null="\n" */
short C_tchar2;
char tchar2[5]; /* null="A" */
short C_tchar3;
char tchar3[2];
float tfloat1[4]; /* null=1.1 */
float tfloat2[2];
float tfloat3; /* null=9999.99 */
double tdouble1[2]; /* null=55555.99 */
double tdouble2; /* null=-999.123 */
char tstring0[3][18]; /* null="\n\t\f\\\’\"\vHELLOWORLD" */
char tstring1[3][20]; /* null="HELLO WORLDB" */
short C_tstring2;
unsigned short L_tstring2[3];
char tstring2[3][20];
short C_tstring3;
unsigned short L_tstring3[4];
char tstring3[4][20]; /* null="TESTEST" */
char tstring4[15]; /* null="HELLO TEST" */
char tstring5[15]; /* null="MEGA TEST" */
char tcarray1[30]; /* null="\0\n\t\f\\\’\"\vHELLOWORLD" */
unsigned short L_tcarray2;
char tcarray2[25]; /* null="\0\n\t\f\\\’\"\vHELLOWORL\n" */
short C_tcarray3;
unsigned short L_tcarray3[10];
char tcarray3[10][30]; /* null="\0\\\nABC\t\f\’\vHELLO" */
char tcarray4[5]; /* null="ABC" */
char tcarray5[5];

};

VIEWFILE(5) 3 / 9

Chapter 2

DESCRIPTION

View files (usually with extension .v) describe the data block or structure which later is generated by viewc(8) binary. The view
compiler generate C header file for view file. Also the compiler generate the object-file with extension .V. The object-file basically
is the same view file except it contains platform specific meta data. For each platfrom (OS/CPU changes), view file shall be re-
compiled. How ever during the middleware operations, the message view message produced on one platform is transferable on
the other platform. This basically is the core view feature, so that programmer may operate with C structures, but the middleware
ensures that structure is successfully delivered to the target system in cross platform way.

View files may describe single element or array of the element (e.g. tshort1). The arrays are supported for STRING and CARRAY
fields too. In those cases those are two dimensional arrays.

For STRING and CARRAY types, length can be specified. The length is given in total number of bytes. So if you want to store
"ABC", you will need to specify count 4, one extra byte for EOS (zero terminator).

The next section describes each of the view file elements.

FLD_TYPE C_NAME FB_NAME COUNT FLAGS SIZE NULL_VAL

VIEWFILE(5) 4 / 9

Chapter 3

VIEW FILE ELEMENTS

FLD_TYPE
Field type. This is how the field will be presented in the C structure. Following types are supported: short, long, char,
float, double, string and carray. Carray is a blob, which might contain binary zero byte (0x00).

C_NAME
Field name in c structure. The rule against the field name applies the standard ones which applies to C variable names.
viewc accepts max length of the 256 for the C identifier. But actual size is determined by compiler.

UBF_NAME
Optional UBF buffer field name. This is used by Bvstof(3) - convert C struct to UBF buffer. And by Bvftos(3) - convert
UBF buffer to c structure. If the setup of the UBF field is not needed, then field can be skipped with "-" (minus sign in
view file). In that case no mappings are processed. During the Bvstof and Bvftos invocation. If field is set, then FLAGS
field changes the logic how the mapping is processed.

COUNT
This array element count. As in view file each of the c fields can be array, this defines the behavior. If field is set to 1, then
field is created as a normal one. If count > 1, then array is defined. The count cannot be less than 1, in such case view
compiler will give an error. For CARRAY and string fields, count greater that 1 will create basically two dimensional
array, where one dimension is count and another dimension is size.

FLAGS
There are defined several flags for the view file. For values see the section bellow. If not flags are set, then value "-" shall
be used in view descriptor. Some options of the flags can be changed in the runtime with Bvopt(3) function.

SIZE
Number of bytes for string or carray definition. For other field types it is not valid to be set and will cause viewc
complication error. For string and carray it is mandatory to be set size set. For other types use value "-".

NULL_VAL
This is NULL value for the field. The NULL value indicates the value when it can be considered that field is empty. The
NULL value is used for following cases: 1) When transferring data from C to UBF buffer by Bvstof(3). Each field is
tested against NULL value. If field is NULL and the updated mode BUPDATE, then field is not copied to target buffer.
In case of multiple occurrences, the occurrence will be lost if next C array element is not NULL. To use default NULL
specification, use "-" field. Which means 0 for short/long/int. 0.0f for float/double, "" - for string and zero length carray.
To encode special symbols, spaces in the NULL value, use single or double quoted string. The view compiler recognizes
following escape sequences \0 - for 0x00 byte, \n, \t , \f, \\, "’", \", \v. For string NULLs the EOS terminator 0x00 byte
is not needed. NULL values are used during the tpcalloc(3) operation. The buffer is initialized with default values by
help of the Bvsinit(3) function. To set individual field to the NULL value use Bvselinit(3). To test the field for NULL
value use Bvnull(3). If no NULL value is present for a field use keyworkd NONE wiht out quotes. In that case no value
will be considered NULL. This will mean that any value will be transfered to UBF. And any value will be copied over to
desination service when doing tpcall(3).

VIEWFILE(5) 5 / 9

Chapter 4

VIEW FLAGS

F
Map the field from C struct to UBF (will be processed by Bvstof(3)).

S
Map the field from UBF to C struct (will be processed by Bvftos(3)).

N
Do not perform UBF mappings at all (Bvstof(3), Bvftos(3) will skip the field in the same way as "-" value used for flags.).

C
Flag means generate count indicator for the field. The count field type is short. The count field is made as C_ prefix for
the C field name. If other field is named as combination of C_ and this field name, then C compiler will generate error
as duplicate member of the structure. The count field participates during the data transfer to UBF buffer via Bvstof(3),
Bvftos(3) commands. For the transfer for to the UBF, the count will indicate occurrences to transfer. For example 0,
will make zero transfer (buffer will not be setup). The count field participates also in structure transfer view tpcall(3) or
other buffer related IPC operation. The actual data transfered to the target system will depend on count field. The other
elements in target system will be initialized with NULL value, defined in view. If count field is not set (no C flag present),
all occurrences will be sent to the target system. And all occurrences will be copied to the UBF buffer. When data is
transfered from UBF to C structure, then count field is set to number occurrences are written in the structure. For sample
reference, see C_tshort2 field and its original tshort2 definition.

L
If this flag is set, then additional length indicator(s) are generated. This is used to indicate the actual length for the
CARRAY data, to be written to UBF buffer. If data is converted fro UBF buffer to C structure, then field will indicate the
number of bytes copied to C structure. In case of strings, the field is updated only in case when data is copied from UBF to
C struct, in that case it is set to number of bytes written to C struct. When converting from C to UBF, for strings this length
value is ignored and EOS termination of the string are used for length indication. The length field is produced as prefix
L_ for the given field. In the same way as for C, there might be conflict with duplicate field if another field is already as
this field prefixed with L_. The field type is unsigned short. IF COUNT is greater than 1, then length indicators are array
of unsigned short, because the length indication must be processed for each of the elements in array. If L flag is not set,
then for carray full buffer size is copied to UBF and back. The length plays similar role for C struct data transfer over the
tpcall(3) and other IPC operations. Only the number set it length are transfered to target service for the CARRAY fields.

VIEWFILE(5) 6 / 9

Chapter 5

EXAMPLE

See atmitest/test040_typedview for sample usage.

VIEWFILE(5) 7 / 9

Chapter 6

BUGS

Report bugs to support@mavimax.com

mailto:support@mavimax.com

VIEWFILE(5) 8 / 9

Chapter 7

SEE ALSO

viewc(8), Bvftos(3), Bvstof(3), Bvsinit(3), Bvselinit(3), Bvnull(3), Bvopt(3), Bvrefresh(3)

VIEWFILE(5) 9 / 9

Chapter 8

COPYING

© Mavimax, Ltd

	SYNOPSIS
	DESCRIPTION
	VIEW FILE ELEMENTS
	VIEW FLAGS
	EXAMPLE
	BUGS
	SEE ALSO
	COPYING

