TPSETUNSOL(3)

TPSETUNSOL(3)




TPSETUNSOL(3)

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME




TPSETUNSOL(3)

Contents

1 SYNOPSIS

2 DESCRIPTION

3 RETURN VALUE
4 ERRORS

5 EXAMPLE

6 BUGS

7 SEE ALSO

8 COPYING




TPSETUNSOL(3)

Chapter 1

SYNOPSIS

#include <atmi.h>
void (tpsetunsol (void (disp) (char *data, long len, long flags))) (char *data, long len, long flags);
For XATMI client link with -latmiclt -latmi -lubf -Instd -Ipthread -lrt -Im

For XATMI server link with -latmisrv|-latmisrvnomainl-latmisrvinteg -latmi -lubf -Instd -Ipthread -lrt -Im




TPSETUNSOL(3) 2/8

Chapter 2

DESCRIPTION

Functions sets unsolicited message handler. On the return function returns previous handler. When system is initialized, the
handler is set to NULL thus no callback function is registered for receiving unsolicited messages. When unsolicited message
handling is needed, then disp argument must be set to non NULL function. The signature for the function is:

void notification_callback (char xdata, long len, long flags);

The notifications are received by this function, when somebody sends tpnotify(3) or tpbroadcast(3) to this client, and the
tpsetunsol() handler is set. In that case the notification_callback callback function is invoked with XATMI allocated buffer in
variable data and len. The user shall not free the buffer, as it is automatically freed when function finishes processing. The flags
parameter currently is not used.

Callbacks are processed in case if in progress tpcall(3) or tpgetrply(3) receives the notification. In that case callback is invoked.
The other option to process notification is that user process manually calls tpchkunsol(3) at some time interval.

The processing that can be done inside the callback is limited to following functions:

1. tpalloc()
2. tpfree()
3. tpgetlev()

4. tprealloc()

5. tptypes()

So basically if some significant processing is required within the callback, the user shall allocate new XATMI buffer, copy the
data to it and create new thread. The copied data shall be passed to the thread for processing. And in the end callback can do
return.

Enduro/X does not strictly control what API is used within the callback. It is up to user to follow these rules, otherwise unexpected
behavior might occur.




TPSETUNSOL(3) 3/8

Chapter 3

RETURN VALUE

On success, tpsetunsol() return previous function pointer, might be NULL too; on error, TPUNSOLERR is returned, with
tperrno set to indicate the error.




TPSETUNSOL(3)

4/8

Chapter 4

ERRORS

Note that tpstrerror() returns generic error message plus custom message with debug info from last function call.
TPEINVAL Environment variables not configured, see ex_env(5) page.
TPESYSTEM System failure occurred during serving. See logs i.e. user log, or debugs for more info.

TPEOS System failure occurred during serving. See logs i.e. user log, or debugs for more info.




TPSETUNSOL(3)

5/8

Chapter 5

EXAMPLE

See atmitest/test038_tpnotify/atmiclt38.c for sample code.




TPSETUNSOL(3)

6/8

Chapter 6

BUGS

Report bugs to support@mavimax.com



mailto:support@mavimax.com

TPSETUNSOL(3)

7/8

Chapter 7

SEE ALSO

tpnotify(3) tpbroadcast(3) tpchkunsol(3) tpinit(3)




TPSETUNSOL(3)

8/8

Chapter 8

COPYING

© Mavimax, Ltd




	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	EXAMPLE
	BUGS
	SEE ALSO
	COPYING

