
TMSRV(8) i

TMSRV(8)



TMSRV(8) ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME



TMSRV(8) iii

Contents

1 SYNOPSIS 1

2 DESCRIPTION 2

3 OPTIONS 4

4 XA RECOVER SETTINGS FOR ORACLE DB 6

5 EXIT STATUS 7

6 BUGS 8

7 SEE ALSO 9

8 AUTHOR 10

9 COPYING 11



TMSRV(8) 1 / 11

Chapter 1

SYNOPSIS

tmsrv [OPTIONS]



TMSRV(8) 2 / 11

Chapter 2

DESCRIPTION

This is special ATMI server which is used for distributed transaction coordination. For new transactions started with tpbegin(),
tmsrv generates new XID and passed it back to transaction initiator. At the same time transaction is remembered by tmsrv as
active transaction and time-out counter is checked by background thread.

In Enduro/X XA Resource Managers are numeric identifiers, which are allowed to be in range of 1..32. Enduro/X’s Resource
Manager ID (RMID) is same identifier as Group Number or grpno known in other ATMI systems.

If during distributed transaction processing new resource manager is associated with transaction, then process notifies initial
transaction manager that new association must be made. In active phase this too is stored in process memory.

When transaction comes to commit() phase, then it is logged to disk. Every transaction is logged to separate file. File name
contains resource manager ID and transaction XID. During the prepare phase status of every Resource Manager is logged. The
same is with commit phase. Once all resources are completed, transaction file is removed. If tmsrv crashed for in-progress
transaction, then transaction files are read from disk, and appropriate actions according to state machine are performed (aborted
or rolled back).

If running transaction did time-out, then background thread will abort it automatically, and for caller process commit() will fail
with abort-only message.

In cluster environment, other transaction manager of corresponding resource managers are involved for prepare/abort/commit
actions. Also as every service doing as part of single transaction, must have a cluster link to initial transaction manager (for
registration purposes). Thus means that all involved nodes, must have direct cluster visibility, otherwise transactions will fail.

Transaction managers can be load balanced with ndrxconfig.xml with min/max attributes. In load balance manner at tpbegin()
corresponding free transaction manager will be selected. Later at transaction process this manager is responsible for full cycle
of the transaction. Other resource managers for this transaction will help for prepare/commit/aborts of other RMs. These other
TMs will be selected in load balanced mode.

Every instance of tmsrv will advertise following list of services

1. @TM-<Resource Manager ID>

2. @TM-<Cluster Node ID>-<Resource Manager ID>

3. @TM-<Cluster Node ID>-<Resource Manager ID>-<EnduroX Server ID>

For example for Resource Manager ID 1, Cluster Node ID 6, Enduro/X Server ID 10 services will look like:

1. @TM-1

2. @TM-6-1

3. @TM-6-1-10



TMSRV(8) 3 / 11

Currently 1. format is used for starting the transaction, and accepting prepare/commit/abort calls from master TM of the trans-
action. Service Nr 3. is used by transaction initiator for subsequent calls of the tpcommit()/tpabort(). Also 3. is used by services
involved in transaction to register new Resource Manager ID as part of the transaction.

For XA processing, resource manager drivers are loaded via dynamic loadable shared libs. Resource manager should expose
xa_switch in shared lib. For every different resource manager, there is different Enduro/X server running. Enduro/X process gets
associated with corresponding RMDI via NDRX_XA_RES_ID environment variable.

To configure different RMID’s for different processes or tmsrvs. Use the Enduro/X build in facility of environment variable
override. See the manpage of ex_env(5).

Enduro/X support static and dynamic XA registration.



TMSRV(8) 4 / 11

Chapter 3

OPTIONS

-t DEFAULT_TIMEOUT
DEFAULT_TIMEOUT is default transaction time-out in seconds.

-l LOG_DIR
LOG_DIR is full path to transaction log file directory. Process at startup scans the directory for transaction files. The
format of the file name is following: TRN-<Cluster Node ID>-<RMID>-<Server ID>. To move transaction to different
transaction manager. The log file should be renamed accordingly.

[-s SCAN_TIME]
Time in seconds for one cycle to perform transaction actions for background thread. I.e. the background thread does the
sleep of this time on every loop. Default is set to 10.

[-c TIME_OUT_CHECK]
This is periodic timer for doing active transactions time-out checks. Default is set to 1

[-m MAX_TRIES]
Max tries to complete whole transaction by background thread. If the counter is reached, then no more attempts to complete
the transaction are done. The counter is restarted at tmsrv reboot. Default is set to 100.

[-r XA_RETRIES]
This is number of attempts on resource manager when it returns XA_RETRY during the commit. So lets say we have
issued tpcommit() and some involved database is returning XA_RETRY. If -r is set above 2, then during the processing
of tpcommit(), the xa commit to database will be retries one more time. If DB returns any other error than XA_RETRY
or succeeds, the transaction is proceeded. If retry is returned again, then TPEHAZARD is returned to caller, transaction
is moved to background thread, and will by processed by -m tries. But also here every -m try for XA_RETRY will be
multiplied by -r attempts. Default value is seto to 3.

[-p THREAD_POOL_SIZE]
This is the number of threads processing incoming requests. If all threads are busy, then job is internally queued. It is known
that some databases slowly process some of the XA operations, for example xa_rollback. Thus multiple threads can handle
this more efficiently. Default threadpool size is set to 10. For more load balancing it is recommended to start multiple
tmsrv processes for same RMID. Note that tmsrv run with multiple threads, thus for Oracle DB flag +Threads=true MUST
be set in NDRX_XA_OPEN_STR. Otherwise unexpected core dumps can be received from tmsrv.

[-P PING_SECONDS]
Number of seconds to perform database pings by either xa_start+TMJOIN flag or by xa_recover+TMSTARTRSCAN and
TMENDRSCAN flags. The xa_recover is enabled by -R parameter. The default is xa_start. In case of xa_start from
database it is expected error code XAER_NOTA (transaction not found) as the scan is performed for non existent XID,
generated for each worker thread. For xa_recover it is expected that operation succeeds. If the operations goes out of
the normal behavior, then reconnection procedure is set in NDRX_XA_FLAGS - tag RECON i.e. thread will perform
xa_close() and xa_open() and retry operation. See the ex_env(5) manpage for the details. But for quick reference you
may use value RECON:*:3:100 which will perform 3x attempts on any error by sleeping 100 ms in between attempts. The



TMSRV(8) 5 / 11

NDRX_XA_FLAGS must be set in CC config or environment and the attempts must be greater that 1. Other with the
tmsrv will not boot with -P flag set.

[-R]
Enable xa_recover() call for PINGs instead of xa_start(). See -P flag description.



TMSRV(8) 6 / 11

Chapter 4

XA RECOVER SETTINGS FOR ORACLE DB

The -R mode might not be enabled in database for user. I.e. user is not allowed to see open transactions. Thus must be enabled
by following commands on DB user set in XA open string:

grant select on pending_trans$ to <database_user>;
grant select on dba_2pc_pending to <database_user>;
grant select on dba_pending_transactions to <database_user>;
grant execute on dbms_system to <database_user>; (If using Oracle 10.2)
grant execute on dbms_xa to <database_user>; (If using Oracle 10.2)



TMSRV(8) 7 / 11

Chapter 5

EXIT STATUS

0
Success

1
Failure



TMSRV(8) 8 / 11

Chapter 6

BUGS

Report bugs to support@mavimax.com

mailto:support@mavimax.com


TMSRV(8) 9 / 11

Chapter 7

SEE ALSO

ex_env(5)



TMSRV(8) 10 / 11

Chapter 8

AUTHOR

Enduro/X is created by Madars Vitolins.



TMSRV(8) 11 / 11

Chapter 9

COPYING

© Mavimax, Ltd


	SYNOPSIS
	DESCRIPTION
	OPTIONS
	XA RECOVER SETTINGS FOR ORACLE DB
	EXIT STATUS
	BUGS
	SEE ALSO
	AUTHOR
	COPYING

