
EnduroX System Overview i

EnduroX System Overview

EnduroX System Overview ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

1.0 2012-11 Initial draft MV

EnduroX System Overview iii

Contents

1 What is EnduroX? 1

2 How EnduroX Differ from Oracle® Tuxedo® 2

3 What EnduroX deliverable contains? 3

4 How system works 5

5 EnduroX In cluster 6

6 Event processing 9

7 Features of EnduroX 10

8 Additional documentation 11

8.1 Internet resources . 11

9 Glossary 12

EnduroX System Overview 1 / 12

Chapter 1

What is EnduroX?

EnduroX is middle-ware software that composes semantics of Application Transaction Monitor Interface (ATMI). Also En-
duroX provides UBF (Universal Buffer Format) so programmers can use self described buffers for inter-process communication
purposes.

System principles have similarities with Oracle ® Tuxedo ® system.

EnduroX consists release consists of various components. Like libraries for C/C++ programs, transaction monitor it self, and
command line administration utility.

On each machine transaction monitor process runs locally, it controls so called server processes, which are programs which are
started by transaction monitor and they advertise services. It is possible to join together many transaction monitor processes
under same machine or over multiple machines. This makes a cluster.

In cluster environment services are shared over the linked local transaction monitors. It is possible to load balance some service
which runs on local machine and on some other machine. The caller/client might be unaware on which machine the call actually
is served.

EnduroX System Overview 2 / 12

Chapter 2

How EnduroX Differ from Oracle® Tuxedo®

Basically EnduroX is consider as clone of Tuxedo. EnduroX have source level compatibility with Tuxedo. However there are set
of functionality which is missing in EnduroX. This is the list what EnduroX does NOT support:

1. No support for FML views;

2. No FML indexing;

3. Some FML functionality is not implemented (but mostly all is supported);

Improvements over Tuxedo:

1. ATMI servers can register custom poll file descriptors with own callback function;

2. ATMI servers can register periodic callback functions while ATMI server is idling;

3. Cluster is peer based, there is no master node;

4. Much simpler configuration reload during running app. Just edit ndrxconf.xml and run xadmin reload command. Tuxedo
UBB configuration file is much harder to update in running up.

5. System can run with out the main Enduro/X daemon (ndrxd). It is much like running the Tuxedo with out Bulletin Board,
which is not possible for Tuxedo. Even if ndrxd daemon dies for some reason, it is possible to start in back in running
application server instance with out service interruption.

6. Simple TMQUEUE setup. Allows run-time configuration updates and defaulted queue setups.

EnduroX System Overview 3 / 12

Chapter 3

What EnduroX deliverable contains?

The distribution package contains following list of resources:

Table 3.1: Distribution package description - "bin" directory

Resource Description
buildclient Wrapper script for client process build. Basically it links

binary with required EnduroX libraries
buildserver Wrapper script for building server executables. Basically it

links developers object files with libatmisrv.so which
contains main() entry of the process

fdown.sh Internal shell script forced shutdown of the transaction
monitor. Part of ‘ndrx’ admin utility

mkfldhdr Generates C header files for UBF buffers
ndrxd EnduroX deamon. This process is central point of the

application which does the Application Transaction
Monitoring

tmadmin Alias for xadmin
tpbridge Special ATMI server which drives the connectivity for

cluster purposes. It allows to connect one EnduroX
instance to another EnduroX instance

tpevsrv Special ATMI server which serves the local even
distribution over the services

ud ATMI client utility. This reads stdin of dumped UBF
buffer. And sends request to specified service. when
responses is received, it is dumped back to stdout.

xadmin EnduroX Administration command utility. Basically utility
is also responsible for local ATMI instance start, stop,
configuration test/load/reload, status printing, etc.

tmsrv Transaction Manager Server. Responsible for XA two
phase transaction management.

tprecover Enduro/X main daemon (ndrxd) monitoring and recovery
server.

tmqueue Persistent queue support server

EnduroX System Overview 4 / 12

Table 3.2: Distribution package description - "lib" directory

Resource Description
libatmi.so ATMI common client and server shared library, serves

functions like tpcall(), tpforward(), etc.
libatmiclt.so ATMI Client process shared library
libatmisrv.so ATMI Server process shared library. This contains main()

entry point. This serves functions like tpreturn(),
tpforward(), etc.

libexnet.so External network library. Used by tpbridge. This basically
is wrapper for sockets. Library provides facility for
network clients and network servers. Library allows to
handle multiple connections over the single thread

libnstd.so EnduroX standard library, contains debugging and other
facilies

libubf.so EnduroX Universal Buffer Format handling shared library
libnetproto.so EnduroX Standard Network protocol library, used by

tpbridge

Table 3.3: Distribution package description - "include" directory

Resource Description
atmi.h General ATMI interface
exenv.h Execution Environment related macros
fml.h Wrapper for ubf.h
fml32.h Wrapper for ubf.h
nstopwatch.h Stop-watch library
ubf.h Universal Buffer Format handling header
userlog.h User logging facility interface

EnduroX System Overview 5 / 12

Chapter 4

How system works

Basically local ATMI works by using system’s IPC facilities. Following facilities are used by EnduroX:

• System V IPC Semaphores

• Posix Queues

• Posix Sharded Memory

EnduroX System Overview 6 / 12

Chapter 5

EnduroX In cluster

This section gives overview how EnduroX Operates in cluster environment. Currently there can be possible 32 nodes in cluster.
EnduroX clustering utilises TCP/IP connections to join local EnduroX instances. For each link between two different instances
seperate TCP/IP channel is used.

Cluster can be configured in different way, for example with one central node which will have links to all other nodes. Or with
no central node, then there should be created links for each of the machine pair.

Cluster with central node:

Note that in case of central node, each node only sees centre node (Node1), However centre node sees all other nodes.

Cluster can consist with/out central node, for example this 5 node cluster could look like:

In this case each node sees other each other node and it can create invocations of the services from that node.

Cluster also can consist of mixed node. i.e. when some nodes sees each other but some nodes sees only one or few other nodes.
For example consider this 7 node cluster:

EnduroX System Overview 7 / 12

In this case Node6 and Node7 sees only few other cluster nodes. Also in this case only Node1 will see Node7 and Node2 will
see Node6.

Service tables are replaced only over the direct link. They are not distributed over the whole cluster.

Local EnduroX instances can be cluster by using special ATMI server tpbridge. This server accepts configuration (in <appopts>)
where it says either this endpoint is passive (waits for connection) or active (tries to connect to specified ip address:port). The
Node ID of other endpoint and some other parameters.

When connection is established, both endpoints exchanges will full service listings. When some service is remove from local
instance, then over this tcp/ip link update message is sent to other node so that service is removed there too.

Full service lists are exchanged periodically (every 30 sec for example). Also tpbridge periodically sends zero length messages
to other node to keep the connection open.

If connection is lost, both EnduroX local instances will remove all other instance (who’s link is lost) services from shared
memory.

Here is complete scheme how two nodes cooperate:

As you see firstly when TCP connection is established, service lists are exchanged in points a. and b. (also nodes exchange
clock diff so that each call duratation can be corrected between nodes). Each ndrxd instance updates shared memory of services
received from bridge services.

EnduroX System Overview 8 / 12

After that we have ATMI client on Node1 which calls service MYSERVICEY which is located on Node2. It resolve shared
memory which says that this is on other node. Then call is made to TPBRIDGE002 Queue, which forwards the packet to other
node. See points 1. - 6.

Also it is possible to have service be presented locally and on remote machine. All this information is recorded in shared memory
for each of the services. Each shared memory entry contains the 32 element long array which at each cell contains the number
of services shared on other node. EnduroX environment parameter NDRX_LDBAL says in percentage how much requests serve
locally and how much to send to remote machine. Percentage is calculated on random basis and remote node is also calculated
on random basis. The shared mem info can be looked by xadmin, psvc command, for example:

$ xadmin
NDRX> psvc
ndrxd PID (from PID file): 5505
Slot Service Name Nsrv Flags CSrvs TClst CMAX CNODES
------ ------------ ---- ----- ----- ----- ---- --------------------------------
318 RETSOMEDATA 1 1 1 3 12 00000000000300000000000000000000
1051 UNIX2 1 1 1 2 12 00000000000200000000000000000000
3844 @TPEVUNSUBS 1 1 0 0 0 00000000000000000000000000000000
4629 UNIXINFO 1 1 1 3 12 00000000000300000000000000000000
8676 ECHO 1 1 1 3 12 00000000000300000000000000000000
10293 TIMEOUTSV 1 1 1 3 12 00000000000300000000000000000000
11169 @TPEVSUBS 1 1 0 0 0 00000000000000000000000000000000
14301 @TPEVDOPOST 1 1 0 0 0 00000000000000000000000000000000
14894 TESTSV 1 1 1 3 12 00000000000300000000000000000000
16648 @TPBRIDGE002 1 1 0 0 0 00000000000000000000000000000000
16681 @TPBRIDGE012 1 1 0 0 0 00000000000000000000000000000000
17001 NULLSV 1 1 1 3 12 00000000000300000000000000000000
17386 @TPEVPOST 1 1 0 0 0 00000000000000000000000000000000
NDRX>

Which for example displays that 2 service instances of UNIX2 is available on Node12.

EnduroX System Overview 9 / 12

Chapter 6

Event processing

EnduroX Supports ATMI events via tpsubscribe(), tppost() and tpunsubscribe() calls. Events are processed by special ATMI
server named tpevsrv. This server ships in EnduroX package. Events are supported in clustered environment too. In this case
the local node additionally broadcasts event to all other connected nodes. On other nodes tpbridge process delivers this event to
local tpevsrv which posts the event locally only.

EnduroX System Overview 10 / 12

Chapter 7

Features of EnduroX

This section lists the features of EnduroX framework:

1. Runs on 64bit GNU/Linux, starting from Kernel version 2.6.12.

2. Distributed architecture.

3. Peer based cluster. None of cluster nodes are master.

4. PING of ATMI servers are supported. If server does not respond on pings withing timeframe, they being restarted.

5. EnduroX monitors processes:

a. For long startup, processes are being killed and restarted

b. If proceses for some reason dies, they are being restarted

c. If process dies who was the only which provides some service then SRVCERR response is sent back to caller

d. For long shutdown (not in time frame), processes are forcebly killed

6. The run-time is possible with out local central ATMI Monitor (ndrxd). As long as other servers are running, system will
work.

7. It is possible to restart ndrxd during the runtime. Runtime will not be interrupted. When doing restarting, ndrxd must be
started in recovery mode. In this mode it learns about the system and only after a while it becomes a master of the system.

8. Local housekeeping is made. If ATMI clients are unclean shutdown (i.e. not called tpterm()). Then EnduroX daemon
detects these cases and cleans up system accordingly.

9. It is easy to debug application for EnduroX. The server processes is possible to start from command line (not mandatory
started by ndrxd). This means that it is possible to start server processes via wrappers like valgrind or start via IDE and use
step by step debbuging of server process.

10. System is tested by extensive automated unit tests.

11. buildserver and buildclient are just a wrapper scripts. It is possible to link binaries direclty with correct shared libraries.

12. It is possible to specify environment overrides for each of the seperate ATMI server.

13. EnduroX contains debbuging facilities. It is possible to get debug logs for EnduroX ATMI and UBF sub-systems. Logging
for each of the systems can be configured seperately for each of the executables using these libs.

14. ATMI configuration can be reloaded during runtime. It can be done as simple as just editing the config file ndrxconfig.xml
and running xadmin reload.

EnduroX System Overview 11 / 12

Chapter 8

Additional documentation

Internet resources

[1] [ATMI-API] http://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgint6.htm

[2] [FML-API] http://docs.oracle.com/cd/E13203_01/tuxedo/tux91/fml/index.htm

http://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgint6.htm
http://docs.oracle.com/cd/E13203_01/tuxedo/tux91/fml/index.htm

EnduroX System Overview 12 / 12

Chapter 9

Glossary

This section lists

ATMI
Application Transaction Monitor Interface

UBF
Unified Buffer Format it is similar API as Tuxedo’s FML

	What is EnduroX?
	How EnduroX Differ from Oracle® Tuxedo®
	What EnduroX deliverable contains?
	How system works
	EnduroX In cluster
	Event processing
	Features of EnduroX
	Additional documentation
	Internet resources

	Glossary

