
NDRXCONFIG.XML(5) i

NDRXCONFIG.XML(5)

NDRXCONFIG.XML(5) ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

NDRXCONFIG.XML(5) iii

Contents

1 SYNOPSIS 1

2 DESCRIPTION 4

3 DEBUG CONFIGURATION FILE SYNTAX 5

4 VARIABLE SUBSTITUTION 10

5 EXAMPLE 11

6 BUGS 13

7 SEE ALSO 14

8 COPYING 15

NDRXCONFIG.XML(5) 1 / 15

Chapter 1

SYNOPSIS

<?xml version="1.0" ?>
<endurox>

<appconfig>
<sanity>SANITY_SECONDS</sanity>
<checkpm>CHECKPM_STY</checkpm>
<brrefresh>BRIDGE_REFRESH_TIME</brrefresh>
<restart_min>MIN_RESTART_TIME</restart_min>
<restart_step>RESTART_STEP</restart_step>
<restart_max>MAX_RESTART_TIME</restart_max>
<restart_to_check>NDRXD_RESTART_TO_CHECK</restart_to_check>
<gather_pq_stats>NDRXD_GATHER_PQ_STATS</gather_pq_stats>
<rqaddrttl>RQADDRTTL</rqaddrttl>

</appconfig>
<defaults>

<min>MIN_SERVERS_DEFAULT</min>
<max>MAX_SERVERS_DEFAULT</max>
<autokill>AUTOKILL_DEFAULT</autokill>
<env>ENV_OVERRIDE_DEFAULT</env>
<start_max>MAX_STARTUP_TIME_DEFAULT</start_max>
<pingtime>PING_EVERY_TIME_DEFAULT</pingtime>
<ping_max>MAX_PING_TIME_DEFAULT</ping_max>
<end_max>MAX_SERVER_SHUTDOWN_TIME_DEFAULT</end_max>
<killtime>KILL_TIME_DEFAULT</killtime>
<exportsvcs>EXPORT_SERVICES_DEFAULT</exportsvcs>
<blacklistsvcs>BLACKLIST_SERVICES_DEFAULT</blacklistsvcs>
<srvstartwait>NDRXD_SRV_START_WAIT_DEFAULT</srvstartwait>
<srvstopwait>NDRXD_SRV_STOP_WAITT_DEFAULT</srvstopwait>
<cctag>COMMON_CONFIG_TAG_DEFAULT</cctag>
<protected>PROTECTED_SERVER_DEFAULT</protected>
<reloadonchange>RELOAD_ON_CHANGE_DEFAULT</reloadonchange>
<rqaddr>RQADDR_DEFAULT</rqaddr>
<envs group="SVGRP_ENV_GROUP_NAME">

<env name="SVGRP_ENV_VARIABLE_NAME">SVGRP_ENV_VARIABLE_VALUE</env>
<env name="SVGRP_ENV_VARIABLE_NAME_1" unset="SVGRP_ENV_UNSET" />
...
<env name="SVGRP_ENV_VARIABLE_NAME_N">SVGRP_ENV_VARIABLE_VALUE_N</env>

</envs>
...
<envs group="SVGRP_ENV_GROUP_NAME_N">

...
</envs>

</defaults>
<servers>

<server name="SERVER_BINARY_NAME">

NDRXCONFIG.XML(5) 2 / 15

<min>MIN_SERVERS_SRV</min>
<max>MAX_SERVERS_SRV</max>
<autokill>AUTOKILL_SRV</autokill>
<respawn>RESPAWN_SRV<respawn>
<env>ENV_OVERRIDE_SRV</env>
<start_max>MAX_STARTUP_TIME_SRV</start_max>
<pingtime>PING_EVERY_TIME_SRV</pingtime>
<ping_max>MAX_PING_TIME_SRV</ping_max>
<end_max>MAX_SERVER_SHUTDOWN_TIME_SRV</end_max>
<killtime>KILL_TIME_SRV</killtime>
<sleep_after>SECONDS_TO_SLEEP_AFTER_SRV_START</sleep_after>
<srvid>SERVER_ID</srvid>
<sysopt>ATMI_SERVER_SYSTEM_OPTIONS</sysopt>
<appopt>ATMI_SERVER_APPLICATION_OPTIONS</appopt>
<exportsvcs>ATMI_SERVER_EXPORT_SERVICES</exportsvcs>
<blacklistsvcs>ATMI_BLACKLIST_SERVICES</blacklistsvcs>
<srvstartwait>NDRXD_SRV_START_WAIT</srvstartwait>
<srvstopwait>NDRXD_SRV_STOP_WAITT</srvstopwait>
<cctag>COMMON_CONFIG_TAG</cctag>
<protected>PROTECTED_SERVER</protected>
<reloadonchange>RELOAD_ON_CHANGE_SERVER</reloadonchange>
<fullpath>ATMI_SERVER_FULL_PATH</fullpath>
<cmdline>ATMI_SERVER_COMMAND_LINE</cmdline>
<rqaddr>RQADDR</rqaddr>
<envs>

<usegroup>SVGRP_ENV_GROUP_NAME</usegroup>
...
<usegroup>SVGRP_ENV_GROUP_NAME_N</usegroup>
<env name="SVPROC_ENV_VARIABLE_NAME">SVPROC_ENV_VARIABLE_VALUE</env>
<env name="SVPROC_ENV_VARIABLE_NAME_UNSET" unset="SVPROC_ENV_UNSET" />
...
<env name="SVPROC_ENV_VARIABLE_NAME_N">SVPROC_ENV_VARIABLE_VALUE_N</env>

</envs>
</server>
...
<server name="SERVER_BINARY_NAME_N">

...
</server>

</servers>
<clients>

<envs group="CLTGRP_ENV_GROUP_NAME">
<env name="CLTGRP_ENV_VARIABLE_NAME">CLTGRP_ENV_VARIABLE_VALUE</env>
<env name="CLTGRP_ENV_VARIABLE_NAME_UNSET" unset="CLTGRP_ENV_UNSET" />
...
<env name="CLTGRP_ENV_VARIABLE_NAME_N">CLTGRP_ENV_VARIABLE_VALUE_N</env>

</envs>
...
<envs group="CLTGRP_ENV_GROUP_NAME_N">

...
</envs>
<client cmdline="CLT_COMMAND_LINE [${NDRX_CLTTAG} ${NDRX_CLTSUBSECT}]"

log="CLT_LOG"
stdout="CLT_STDOUT"
stderr="CLT_STDERR"
env="CLTGRP_ENV"
CCTAG="CLT_CCTAG"
wd="CLT_WD"
klevel="CLT_KLEVEL"
autostart="CLT_AUTOSTART">

<envs>
<usegroup>CLTGRP_ENV_GROUP_NAME</usegroup>

NDRXCONFIG.XML(5) 3 / 15

...
<usegroup>CLTGRP_ENV_GROUP_NAME_N</usegroup>
<env name="CLTPROC_ENV_VARIABLE_NAME">CLTPROC_ENV_VARIABLE_VALUE</env>
<env name="CLTPROC_ENV_VARIABLE_NAME_UNSET" unset="CLTPROC_ENV_UNSET" />
...
<env name="CLPROC_ENV_VARIABLE_NAME_N">CLTPROC_ENV_VARIABLE_VALUE_N</env>

</envs>

<exec tag="CLT_TAG_EXEC"
subsect="CLT_SUBSECT_EXEC"
log="CLT_LOG_EXEC"
stdout="CLT_STDOUT_EXEC"
stderr="CLT_STDERR_EXEC"
env="CLTGRP_ENV_EXEC"
cctag="CLT_CCTAG_EXEC"
wd="CLT_WD_EXEC"
autostart="CLT_AUTOSTART_EXEC"
klevel="CLT_KLEVEL_EXEC"
/>

<exec tag="CLT_TAG_EXEC2"
subsect="CLT_SUBSECT2_EXEC2"
.../>

</client>
<client cmdline="BINARY2" ...>

<exec tag="CLT_EXE_TAG2" .../>
</client>

<clients>
</endurox>

NDRXCONFIG.XML(5) 4 / 15

Chapter 2

DESCRIPTION

ndrxconfig.xml holds the application domain configuration. It describes the ATMI servers which needs to be started. Counts
of the, how much to start. Also it describes sanity times i.e. period after which system sanity checks should be made. Also it
describes time frames in which ATMI server should start or stop. Internal server ping can be configured here too.

NDRXCONFIG.XML(5) 5 / 15

Chapter 3

DEBUG CONFIGURATION FILE SYNTAX

SANITY_SECONDS
Number of seconds after which perform system sanity checks. This number should divide by environment variable value
NDRX_CMDWAIT. As this actually is time by which ndrxd sleeps periodically.

CHECKPM_STY
This is number of sanity cycles into which check dead processes from the process model. This makes the actual checking
of th PID existence system. Thus if ndrxd is started in learning mode and will not receive signals of the dead servers, then
by setting it will discover exited processes.

BRIDGE_REFRESH_TIME
Number of sanity units in which tpbridge refresh should be send to other node. If for example SANITY_SECONDS is set
to 10, and BRIDGE_REFRESH_TIME is set to 2 then period between bridge refreshes will be 10*2 = 20 seconds. Default
value is 0 - do not send full updates.

MIN_RESTART_TIME
Number of sanity units in which died server will be tried to start back. This is minimal time, means that this time is applied
in case if server was running and died. If it is consecutive try, then RESTART_STEP is applied on this timer.

RESTART_STEP
Number to sanity units to apply on MIN_RESTART_TIME in case of consecutive server death. Meaning that next try of
restart will tried later that previous by this number of sanity units.

MAX_RESTART_TIME
Max number of sanity units after which server will tried to restart. After each consecutive ATMI server death, next
reboot is tried by MIN_RESTART_TIME+RESTART_STEP*try_count. If this goes over the MAX_RESTART_TIME then
MAX_RESTART_TIME is used instead.

NDRXD_RESTART_TO_CHECK
Number of seconds for ndrxd to wait after daemon started in recovery mode. Within this time no sanity checks are
perfomed, but instead "learning" mode is used. During this mode, ndrxd asks each ATMI server for it’s configuration. If
in this time ATMI server does not responds, then ATMI server is subject of sanity checks.

NDRXD_GATHER_PQ_STATS
Settings for pq xadmin command. if set to Y, ndrxd will automatically collect stats for service queues. In future this might
be used for automatic service starting and stopping.

RQADDRTTL
Used only when operating System V queues mode. Due to common queue for multiple services / basically all service
queues are shared request addresses, the only zapping approach when there are no servers on queues, is to check that
in service shared memory there are no linked request address queues, and at time perform unlink of the request address
queue. But here we have a problem. The XATMI server might just started up, opened the RQADDR queue, but did not
yet managed to install record in service shared memory. Thus ndrxd will unlink the RQADDR. To avoid this issue, with

NDRXCONFIG.XML(5) 6 / 15

TTL slight delay is introduced, after which queue is unlinked. Basically when queue is open it’s change time is updated.
And if current time minus change time is less than RQADDRTTL, then queue is not unlinked (in this time server will
be able to add record to service shared memory). Also with this comes a fact that there must be no server processes with
out any service. For those request address queue will be unlinked. The value is in seconds. Checks are performed with
SANITY_SECONDS intervals. Default value is 10 seconds.

MIN_SERVERS_DEFAULT
Default minimum number of copies of the server which needs to be started automatically. This can be overridden by
MIN_SERVERS_SRV per server.

MAX_SERVERS_DEFAULT
Max number of ATMI server copies per ATMI server entry. The difference between MIN and MAX servers means the
number of standby servers configured. They can be started by hand with out system re-configuration. But they are not
booted automatically at system startup. You will have to start them with $ xadmin start -s <server_name> or by $ xadmin
start -i <server_id>. This can be overridden by MAX_SERVERS_SRV.

AUTOKILL_DEFAULT
Should server be automatically killed (by sequence signal sequence -2, -15, -9) in case if server have been starting up
too long, or does not respond to pings too long, or it is performing shutdown too long. This can be overridden by AU-
TOKILL_SRV on per server basis.

ENV_OVERRIDE_DEFAULT
Full path to file containing environment variable overrides. see ex_envover(5) for more details. This can be overridden by
per server basis by ENV_OVERRIDE_SRV. Both are optional settings.

MAX_STARTUP_TIME_DEFAULT
Max time (in sanity units) in which server should start up, i.e. send init info to ndrxd. If during this time server have not
initialized, it is being restarted. This can be overridden by MAX_STARTUP_TIME_SRV.

PING_EVERY_TIME_DEFAULT
Number of sanity units in which perform periodical server pings. This can be overridden by PING_EVERY_TIME_SRV.
Zero value disables ping.

MAX_PING_TIME_DEFAULT
Number of sanity units, time in which server must respond to ping requests. If there is no response from server within this
time, then restart sequence is initiated. This can be overridden by MAX_PING_TIME_SRV.

MAX_SERVER_SHUTDOWN_TIME_DEFAULT
Maximum time in which shutdown of server must complete in sanity units. If in given time server is not shutdown, then
forced shutdown sequence is started until server exits. This can be overridden by MAX_SERVER_SHUTDOWN_TIME_SRV
on per server basis.

EXPORT_SERVICES_DEFAULT
Comma separated list of services to be applied to all binaries which means the list of services to be exported by tpbridge
server to other cluster node. This can be overridden by ATMI_SERVER_EXPORT_SERVICES.

BLACKLIST_SERVICES_DEFAULT
Comma separated list of services to be applied to all server binaries which means the list of services that must not be
exported by tpbridge server to other cluster node. ATMI_SERVER_BLACKLIST_SERVICES is first priority over the
EXPORT_SERVICES_DEFAULT if service appears in both lists. BLACKLIST_SERVICES_DEFAULT can be overridden
by ATMI_SERVER_BLACKLIST_SERVICES.

NDRXD_SRV_START_WAIT_DEFAULT
Number of seconds to wait for servers to boot. If not started in given time, then continue with next server. This can be
overridden by NDRXD_SRV_START_WAIT. Default value for this is 30 seconds.

NDRXD_SRV_STOP_WAIT_DEFAULT
Number of seconds to wait for server to shutdown. If not started in given time, then continue with next server. This can be
overridden by NDRXD_SRV_STOP_WAIT_DEFAULT. Default value for this is 30 seconds.

NDRXCONFIG.XML(5) 7 / 15

KILL_TIME_DEFAULT
Time in sanity units after which to progress from first signal -2 to next signal -15. And after -15 this time means when next
-9 signal will be sent. This is used if forced restart of forced shutdown was initiated by ndrxd. This can be overridden by
KILL_TIME_SRV.

COMMON_CONFIG_TAG_DEFAULT
Common configuration tag. Loaded into NDRX_CCTAG environment variable before process is spawned. This can be
overridden by COMMON_CONFIG_TAG.

PROTECTED_SERVER_DEFAULT
Protected server is one that does not shutdown with xadmin stop unless you pass the xadmin stop -c parameter (complete
shutdown). Still you can run the sreload and stop it by xadmin stop -i <srvid> or by xadmin stop -s <servernm>. The
xadmin restart won’t work on these because -c is not supposed to be used by restart. The idea behind this, is to avoid
accidental stop of the critical servers, like bridge or something else which is involved into ndrxd daemon management it
self. This can be overridden by PROTECTED_SERVER.

RELOAD_ON_CHANGE_DEFAULT
If set to Y or y the ndrxd daemon will scan the every binaries time stamp, and if it detects that time stamp is changed
ndrxd will reload (stop/start) the XATMI servers one by one. The scanning will occur at every sanity cycle. This is
recommended to be used only for development purposes. And must not be used on production servers! This can be
overridden by RELOAD_ON_CHANGE_SERVER on per server basis.

RQADDR_DEFAULT
Request address (common service queue) used in System V mode. For other modes each service have it’s own queue, but
due to limitations of the System V queues, for each XATMI server process have it’s own queue (built as process /exe name
and service id) or processes can share the queue by having this request address, thus getting a one queue multiple servers
mechanism for message dispatching. Also all servers attached on the same request address must advertise all the services
from all servers attached on the same request address. If some server will miss a service, it might receive request for
particular service, the error will be logged and message will be dropped, thus caller will get a timeout. If different request
addresses are serving the same service, then request will be load balanced in round-robin mode. This can be overridden by
RQADDR on per server basis. Request address cannot start with @ symbol. The max length of the request address is 30
chars.

SECONDS_TO_SLEEP_AFTER_SRV_START
Number of seconds to wait for next item to start after the server is launched. This is useful in cases when for example we
start bridge server, let it for some seconds to connect to other node, then continue with other service startup.

SERVER_BINARY_NAME
ATMI server executable’s name. The executable must be in $PATH. This name cannot contain special symbols like path
separator / and it cannot contains commas ,! Commas are used as internal queue separator combined with binary names.

RESPAWN_SRV
Do the automatic process re-spawning if process is died for some reason. The default value is Y, meaning that processes
are automatically recovered. If set to N or n, then sanity checks will not automatically re-boot the process.

SERVER_ID
Server ID. It is internal ID for server instance. For each separate ATMI server the ID must be unique. Also special care
should be take when MAX_SERVERS_SRV is greater than 1. In this case up till MAX servers, internally SERVER_ID is
incremented. Thus for example if SERVER_ID is 200, and MAX_SERVERS_SRV is 5, then following server IDs will be
reserved: 200, 201, 202, 203, 204. The maximum server id is set in $NDRX_SRVMAX environment variable. Minimal
server id is 1.

ATMI_SERVER_SYSTEM_OPTIONS
Command line system options passed to ATMI server. Following parameters are used by Enduro/X ATMI servers: -N,
boolean type. If present, then no services will be advertised by server. In this case will be advertised only services specified
by -s flag. For example if server advertises SERVICE1, SERVICE2, SERVICE3, but -N was specified, and -sSERVICE3 is
specified, then only service SERVICE3 will be advertised. The -s argument also can contain aliases for services, for exam-
ple -sOTHERSVC:SERVICE2, then new service OTHERSVC will be advertised which basically is the same SERVICE2
(same function used). -s and -N can be mixed. -s can appear multiple times in system options. With one -s multiple services
can be aliased to single existing service. The format is: -s<NEWSVC1>/<NEWSVC2>/../<NEWSVCN>:<EXISTINGSVC>.

NDRXCONFIG.XML(5) 8 / 15

The , can be used as separator too, but for certain platforms it does not work, thus / is recommended. When using full
advertise (all service) some of them can be masked by -n flag. For example -sSERVICE4 will advertise all, but SERVICE4.
Flag -n can be repeated multiple times. Server binaries output is controlled via -e LOG_FILE, which means that stdout &
stderr of server is dumped to LOG_FILE. There are few internal params: param -k is just a random key for shell scripts.
Another internal param is Server ID which is automatically passed to binary via -i SERVER_ID. Enduro/X supports au-
tomatic buffer conversion for ATMI servers. Currently supported modes are JSON2UBF, UBF2JSON, these modes are
activated by -x paramter in system options. These modes are passed for server functions being advertised. For example
if we have service functions (not services) UBF1FUNC, UBF2FUNC and JSONFUNC and we want to ensure that these
receive converted messages even if caller to UBF service sends JSON and vice versa, then following options might be set
to command line: -xUBF1FUNC,UBF2FUNC:JSON2UBF -xJSONFUNC:UBF2JSON.

ATMI_SERVER_APPLICATION_OPTIONS
Application specific command line options. This follows content after sys options as: system options — app options.

ATMI_SERVER_EXPORT_SERVICES
Enduro/X server specific list of services to be exported. This list is only for tpbridge servers.

ATMI_SERVER_BLACKLIST_SERVICES
Enduro/X server specific list of services that must not be exported. This list is only for tpbridge servers. Blacklist have
higher priority over the Export list.

ATMI_SERVER_FULL_PATH
This is full path of the XATMI server binary. At the process startup this overrides the server binary name at SERVER_BINARY_NAME.
ATMI_SERVER_FULL_PATH is used only for process startup. This is intended for testing, if server wrapper scripts
needs to be started. But as the ndrxd will do the sanity checks against the process names, for time of the testing this
needs to be disabled. Thus to do the testings with full path enabled, please increase the checkpm sanity unit time.
As at the moment of process model checks, the ndrxd will find out that wrapped binary name does not contain the
SERVER_BINARY_NAME, thus will reboot the process.

ATMI_SERVER_COMMAND_LINE
This is alternative command line build by user. From this command line the real process name is extracted as first ex-
ecutable (basename). When building custom command line, the env substitution is available at the stage with following
processes based envs (not counting the globals): NDRX_SVSRVID - Enduro/X server id, NDRX_SVPROCNAME -
server process name (defined in XML config as SERVER_BINARY_NAME variable, NDRX_SVCLOPT - standard
command line options used by Enduro/X. These options are used at stage with ATMI server library gets initialized, it
will use in case ndrx_main() receives less than expected standard argument count. Basically this command line tag is
suitable for interpreted languages, like Java, where interpreter needs to be started as stand alone binary, and the Enduro/X
is initialized as a library within stand alone process.

SVGRP_ENV_GROUP_NAME
Environment variable group name for the servers section. Identifier max length is 30 chars. Same group can be used
for different server processes. One server may import multiple groups. For client processes groups are defined CLT-
GRP_ENV_GROUP_NAME name at <clients> section. At process level groups can be imported by using tag <usegroup>
and specifying the group name. At that moment all variables defined in group are import for process.

SVGRP_ENV_VARIABLE_NAME
This server server’s group environment variable name, that shall be set for process which uses this group. For client
processes CLTGRP_ENV_VARIABLE_NAME set the variable name at group definition. Individual environment vari-
ables can be set at process level. For server processes that is set by SVPROC_ENV_VARIABLE_NAME and for client
processes by CLTPROC_ENV_VARIABLE_NAME.

SVGRP_ENV_VARIABLE_VALUE
This is environment variable value to be set. For client process groups this is defined by CLTGRP_ENV_VARIABLE_VALUE.
For individual processes value is defined by SVPROC_ENV_VARIABLE_NAME and CLTPROC_ENV_VARIABLE_NAME
accordingly. The value is interpreted by variable substitution algorithm (see bellow). The value is interpreted at time when
process is spawned (not defined), meaning that it have access to full process variables at startup moment.

SVGRP_ENV_UNSET
If set to y or Y then environment’s environment variable is unset (removed) from environment. This can be used if some
specific variable for process is not needed. At client environment group level this can be set by CLTGRP_ENV_UNSET,

NDRXCONFIG.XML(5) 9 / 15

at process levels this can be set by SVPROC_ENV_UNSET and CLTPROC_ENV_UNSET accordingly. If any value is
present for this variable, it is ignored, as the main action of this tag is unset the value and only what matters here is the
variable name.

CLT_COMMAND_LINE
Executable name and arguments for client program. Command line basically is a format for subsection substitution. Other
env variables available here too.

CLT_LOG
Logfile to which stdout and stderr is logged. Can be overridden by CLT_LOG_EXEC for each individual process. Optional
attribute.

CLT_STDOUT
File where to log stdout. Can be overridden by CLT_STDOUT_EXEC for each individual process. Optional attribute.

CLT_STDERR
File where to log stderr. Can be overridden by CLT_STDERR_EXEC for each individual process. Optional attribute.

CLTGRP_ENV
Environment override file. See ex_envover(5) for syntax. Can be overridden by CLTGRP_ENV_EXEC for each individual
process. Optional attribute.

CLT_CCTAG
ATMI Client lib Common-Config tag. Can be overridden by CLT_CCTAG_EXEC for each individual process. Optional
attribute.

CLT_WD
Working directory for the process. Can be overridden by CLT_WD_EXEC.

CLT_AUTOSTART
Should process be started automatically? Y or y means boot at start. Can be overridden by CLT_AUTOSTART_EXEC for
each individual process. Optional attribute. Default n.

CLT_TAG_EXEC
Tagname to be set for process.

CLT_SUBSECT_EXEC
Subsection to be set for process. - used as default.

CLT_KLEVEL
Kill level of the client. 0 - do not kill child processes recursively of the client, 1 - do kill child processes only when
performing SIGKILL (-9), 2 - do kill on SIGTERM and SIGINT child processes. The default is 0.

NDRXCONFIG.XML(5) 10 / 15

Chapter 4

VARIABLE SUBSTITUTION

Several parameters in the ndrxconfig.xml file are processed via substitution engine. Engine processes puts the environment
variables or special functions variables and $[PARAMETER] for functions. The value can be escaped with

Functions are processed in case if statement in brackets contains equal sign =. As the sign is not allowed for environment
variables, Enduro/X uses it to distinguish between env variable and function.

Following FUNC (functions) are defined:

dec
Decrypt base64 string in PARAMETER and replace the placeholder with the value. To get encrypted value, it is possible
to use exencrypt(8) tool.

NDRXCONFIG.XML(5) 11 / 15

Chapter 5

EXAMPLE

Sample configuration:

<?xml version="1.0" ?>
<endurox>

<appconfig>
<sanity>10</sanity>
<brrefresh>6</brrefresh>
<restart_min>1</restart_min>
<restart_step>1</restart_step>
<restart_max>5</restart_max>
<restart_to_check>20</restart_to_check>

</appconfig>
<defaults>

<min>1</min>
<max>2</max>
<autokill>1</autokill>
<start_max>2</start_max>
<pingtime>1</pingtime>
<ping_max>4</ping_max>
<end_max>3</end_max>
<killtime>1</killtime>
<envs group="JAVAENV">

<env name="_JAVA_OPTIONS">-Xmx1g</env>
</envs>

</defaults>
<servers>

<server name="tpevsrv">
<srvid>14</srvid>
<min>1</min>
<max>1</max>
<cctag>RM1</cctag>
<env>${NDRX_HOME}/tpevsrv_env</env>
<sysopt>-e /tmp/TPEVSRV -r</sysopt>

</server>
<server name="tpbridge">

<max>1</max>
<srvid>100</srvid>
<sysopt>-e /tmp/BRIDGE -r</sysopt>
<appopt>-n2 -r -i 0.0.0.0 -p 4433 -tA</appopt>

</server>
<server name="jserver2">

<max>1</max>
<srvid>200</srvid>
<sysopt>-e /tmp/BRIDGE -r</sysopt>

NDRXCONFIG.XML(5) 12 / 15

<envs>
<usegroup>JAVAENV</usegroup>
<env name="CLASSPATH">${NDRX_APPHOME}/libs/somelib.jar</env>
<env name="CLASSPATH">${CLASSPATH}:${NDRX_APPHOME}/libs/${NDRX_SVPROCNAME}. ←↩

jar</env>
</envs>
<cmdline>java</cmdline>

</server>
<server name="cpmsrv">

<cctag>RM2</cctag>
<srvid>9999</srvid>
<sysopt>-e /tmp/cpmsrv.log -r -- -k3 -i1</sysopt>

</server>
</servers>
<clients>

<client cmdline="testbinary -t ${NDRX_CLTTAG} -s ${NDRX_CLTSUBSECT}" autostart="Y" ←↩
cctag="RM4">
<exec tag="TAG1" subsect="SUBSECTION1" log="${APP_LOG}/testbin1-1.log" cctag=" ←↩

RM5"/>
<exec tag="TAG2" subsect="SUBSECTION2" log="${APP_LOG}/testbin1-2.log"/>

</client>
<client cmdline="testenv.sh" env="environment.override1" log="env1.log">

<exec tag="TESTENV" autostart="Y"/>
</client>

</clients>
</endurox>

NDRXCONFIG.XML(5) 13 / 15

Chapter 6

BUGS

Report bugs to support@mavimax.com

mailto:support@mavimax.com

NDRXCONFIG.XML(5) 14 / 15

Chapter 7

SEE ALSO

xadmin(8), ndrxd(8), ndrxconfig.xml(5), ndrxdebug.conf(5), ex_envover(5), exencrytp(8)

NDRXCONFIG.XML(5) 15 / 15

Chapter 8

COPYING

© Mavimax, Ltd

	SYNOPSIS
	DESCRIPTION
	DEBUG CONFIGURATION FILE SYNTAX
	VARIABLE SUBSTITUTION
	EXAMPLE
	BUGS
	SEE ALSO
	COPYING

