Enduro/X Internal/External Developer Guide

Enduro/X Internal/External Developer Guide

Enduro/X Internal/External Developer Guide

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

1.0

2012-12

Initial draft

MV

Enduro/X Internal/External Developer Guide iii
Contents
1 Enduro/X Development standard 1
1.1 CProgramming style e e e e 1
11,1 Indentation o o e e e 1
1.1.2 Variable compare with constants 2
1.1.3 Errorhandling e 2
114 Codewith 3
1.1.5 Function visibility e e e e e e e 3
1.1.6 Code documentation e e e e 4
1.2 Reserved identifier prefixes L. L e e 5
1.3 Global variable naming policy e 5
1.4 Reserved UBF field numbers 5
Unit testing 7
Source code indexing with glimpse 8
3.1 Glimpseinstallation e e 8
3.2 Source indexing and searching e e e e e e 8
Enduro/X libraries 10
Common configuration 11
5.1 Enduro/X common configuration SEtUP o . it e e e e e e e e e e e e e e 11
5.2 User accessible configuration SEIVET vt vttt e e e e e e e e e e 12
5.3 Common configuration internals L. e e 12
Common Debug logging API - TPLOG 14
6.1 Logging facilities L L e e e 14
6.2 Hierarchy of the loggers (facilities) e 14
6.3 Debugstring format e e 15
6.4 Briefoflogging functions L e e e e e e e 15
6.4.1 Part of the standard library (ndebug.h) 15
6.4.2 Part of the XATMI library (xatmi.h) o 16
6.5 Requestlogging concept e e 16
6.6 Understanding the formatof logfile 17

Enduro/X Internal/External Developer Guide

10

11

12

13

14

15

16

17

18

Queuing mechanisms

7.1 Linux epoll and FreeBSD kqueue o
7.2 SystemVmode e
73 Pollmode e
Object-API

8.1 Classmodel e e e e e

Generating source code with Enduro/X generators

9.1 Implementing custom gENerators v v v v v v bt e e e
9.2 Building sample application generatorsol
9.2.1 Prepare projectfolder3 Lo
9.2.2 Generate UBF table forbothC& Go
9.2.3 Generate Cclientcode &make
9.2.4 Generate Goservercode & make
9.2.5 Provision runtime and put binaries symlinks00 0000
9.2.6 Runtheclient L

Using unsolicited messages

10.1 Unsolicited message callback processing
10.2 Networked operations e e

10.3 Unsolicited message applications

Adding Enduro/X bindings

Plugin interface

12.1 Plugin Initialization e
12.2 NDRX_PLUGIN_FUNC_ENCKEY functions

Starting Enduro/X XATMI server from other thread than main

13.1 Enduro/X Process naming strategies v v vt et e
13.1.1 Strategy 1 . . .« . . o o e
13.1.2 Strategy 2 o o o e e e e e e

13.2 Booting processes as XATMI servers with out CLOPT

Process forking
Source code management

Process debugging

16.1 Tracking down memory usage with Valgrind for XATMI servers

Additional documentation

17.1 INternet reSOUICES . . . v v v v v o e e e e e e e e e e e e e e e e

Glossary

19
19
19
21

23
25

26
27
27
27
27
30
31
31
35

37
37
38
38

39

40
40
40

41
43
44
44
44

45

46

47
47

48
48

49

Enduro/X Internal/External Developer Guide 1/49

Chapter 1

Enduro/X Development standard

Enduro/X build system is CMake. Version used should be 2.8 and above. It uses Flex and Bison for building UBF (FML)
Expressions.

Enduro/X is programmed in NetBeans C/C++ project. NetBeans supports CMake projects. Some command line editing usually
is done by using VIM editor. The source code is appended with mode line settings. Thus to get the proper indention enabled,
configure VIM editor before doing any edits append ~/.vimrc with following commands:

set nocompatible
filetype plugin on
set modeline

Project also uses libxml2 (provided by system), exhash (already included in include dir) and cgreen (integrated into Enduro/X)
for unit testing.

C Programming style

This chapter points out key aspects of doing code changes in Enduro/X C core.

Indentation

For code formatting Enduro/X C code uses Allman Indentation style, e.g.

void something(void)

{

}

while (x == vy)

{
something () ;
somethingelse () ;

}

finalthing();

with indention of 4 spaces.

Enduro/X Internal/External Developer Guide 2/49

Variable compare with constants

In case if in C compare variable with constants, the constant must be first and the follow the variable. This allows to escape
from the errors when accidentally by writing single = assignment is made instead of compare, which might lead to unpredictable
erTors.

For example

#define SOME_CONST 10
int 1i=5;

/* THIS IS BAD STYLE x/
if (i==SOME_CONST)
{

}

/* THIS IS GOOD STYLE =/
if (SOME_CONST==i)
{

}

Error handling

All API calls which Enduro/X uses, must be error checked. When error is detected, it must be logged with corresponding logger.
Either ndrx or ubf logger. ubf logger (UBF_LOG() macros) shall be used only for libubf library. All other libraries shall log
with NDRX_LOG() macros.

The critical errors which are more like system error or some very wrong configuration shall be logged with userlog() too. This
ensures that during the production operations, administrators can see the

Enduro/X uses "goto" as escape from function in case of error. The all functions that shall handle the errors (i.e. and not return
any other error identifier like NULL pointer), the function shall bring with it self an ret (return state) variable the simple integer.
The ret by default shall be set to EXSUCCEED from ndrstandard.h header. The exit of function shall be marked with "out" label.
After the out some de-init and status printing could be done. When error occurs, recommended way to escape is to write some
log about the situation and use macro EXFAIL_OUT(ret), which effectively set the ret to EXFAIL and performs goto out,.

Some examples of error handling:

#include <ndrstandard.h>

[**
* Some error function
* @param some_arg cannot be less than 0
* @return EXFAIL (on failure), EXSUCCEED (all OK)
*/
expublic int ndrx_some_func (int some_arqg)
{
int ret = EXSUCCEED;

if (some_arg < 0)

{
/* what is ret=EXFAIL; goto out; =*/
EXFAIL_OUT (ret) ;

out:

Enduro/X Internal/External Developer Guide

3/49

return ret;

Code with

The code line length should be more or less 80 symbols. If function arguments are going wider, then moved some to next line

string goes over the 80 chars then string shall be spitted with standard compiler concatenation done by C.
Typical word wrap should look like:

/+ lock call descriptor =*/
if (!(flags & TPNOREPLY))
{
/* get the call descriptor =*/
if (EXFAIL==(tpcall_cd = get_call_descriptor_and_lock (&call->callseq,
timestamp, flags)))

NDRX_LOG (log_error, "Do not have resources for "
"track this calll!");

ndrx_TPset_error_fmt (TPELIMIT, "%s:All call descriptor entries have been used "

" (check why they do not free up? Maybe need to "
"use tpcancel()?)", __func_);
EXFAIL_OUT (ret) ;

}

else

{
NDRX_LOG (log_warn, "TPNOREPLY => cd=0");
tpcall_cd = 0;

Function visibility

I

Function visibility in C is controlled by static prefix for functions. If one is present, then function visibility is at object file level,
if prefix is not present, then function visibility is global exported symbol. To make it more clear, Enduro/X SDK includes two

macros

1. expublic - empty macros to indicate that function names is available globally.

2. exprivate - substitute for static keyword. Function visibility is at file level.

for example:

#include <ndrstandard.h>

expublic void ndrx_some_global_func (void)
{

return;

exprivate void some_local_func (void)
{

return;

Enduro/X Internal/External Developer Guide 4/49

Code documentation

ALL written code must be properly commented, so that other source maintainers can clearly understand what’s going on at
particular case. Comments are welcome.

Regarding the mandatory documentation, Enduro/X uses Doxygen / JavaDoc style comments for functions, macros and files, so
that the API documentation can be generated by doxygen. All function arguments must be documented at any level.

File beginning must start with following block:

[**
* @brief Short description of the file purpose
*

* @file file.name
*/

>>> License block <<<

The structure for C code is denoted by following comments (see bellow). This also include the sample type definitions and
comments for given resources. Where possible grouping of comments shall be made. So that it could be denoted to user
commons of the resources.

[frmmmmmm e e IRelidgg=———mmrmmmemmeemeeeeeeeeeseo e == */
#include <ndrstandard.h> /% Enduro/X standard header =/

[e eeseeeee=oes BREErng-=—reremme e e s s e e e e */
/** This is global variable =/

extern int ndrx_G_some_global; /** < this is other way to document... =*/
e e A S e */

#define HELLO /**< This is hello world macros x/

[**

* This is group of worlds (this is detailed description of group)
* @defgroup worldsgrp Group of worlds (short description of group)
*x @f

*/

#define WORLD_ 1 /*%< Hello world 1 =x/

#define WORLD_2 /**< Hello world 2 =*/

/*x Hello world 3 define, use this if the comment line is too large to fit
* together in 80 symbols

*/

#define WORLD_3

/** @} =/ /% end of worldsgrp =/

[frmmmmmm e S */
[frmmmmmm e B R S */
[**

* Some structure used for

*/

struct some_struct
{
int some_field; /x%< some field descr x/

}i

/[x %
* This is type of \ref some_struct used for
* thus we reference the structure here.
*/

typedef struct some_struct some_struct_t;

Enduro/X Internal/External Developer Guide 5/49

Where each of the section shall included the given type of resources declared.
Function documentation is following, by example:

/[* %
* This is example of some function. This is description of func.
* @param[in] argl this is input argument
* @param[in,out] arg2 this is output argument
* @Qreturn in case of success function returns ptr to updated \p arg2
* in case of error NULL is returned.
*/
expublic char xndrx_some_func (int argl, char =*arg2)

{
return NULL;

}

Reserved identifier prefixes

As the C language do not have prefixes like for high level languages (Java, C#, etc), for C developers have to prefix their
identifier so that there is no conflict between different party code blocks. This is the case for Enduro/X too. Enduro/X have
reserved following keywords as a prefixes for identifiers:

1. NDRX - system wide internal Enduro/X identifiers
2. ndrx - system wide internal Enduro/X identifiers

3. EX - system wide internal Enduro/X identifiers

4. ex - system wide internal Enduro/X identifiers

5. tp - used for user functions for ATMI protocol

B - used for UBF buffer API

atmi - internal identifiers for tp functions

® =2

edb - LMDB renamed for Enduro/X internal usage

Global variable naming policy

Global variables (non static exported from the object file) shall be named with following scheme:
1. ndrx_G_<variable name>.

The old naming scheme included only G in the front, but we are moving the the common naming scheme with NDRX/ndrx in the
front of the all exported identifiers.

Reserved UBF field numbers

Enduro/X have reserved some list of typed UBF buffer field identifiers for internal use. The list is following:

1. 1-3999

Enduro/X Internal/External Developer Guide 6/49

2. 6000-10000
3. 30000001-33554431

For user following field IDs are available:

1. 4000-5999
2. 10001-30000000

Enduro/X Internal/External Developer Guide 7149

Chapter 2

Unit testing

Bot UBF and ATMI sub-systems are unit tested. UBF tests are located under ubftest folder, which could be run by:

$./ubfunitl 2>/dev/null
Running "main"...
Completed "main": 5749 passes, 0 failures, 0 exceptions.

ATMI tests are located at atmitest directory, can be run by:

$./run.sh
tail -nl test.out
Completed "main": 18 passes, 0 failure, 0 exceptions.

Enduro/X Internal/External Developer Guide 8/49

Chapter 3

Source code indexing with glimpse

So that developers would be more simple to orient in the source code from command line, Enduro/X build system offers use of
glimpse tool to index the source code.

Glimpse installation

On Ubuntu like GNU/Linux systems, glimpse can be installed in following way:

$ sudo apt install glimpse

On other systems where glimpse does not come out of the box, it can be compiled from source code, download here: http://webglimpse.ne
download.php

For example:

S wget http://webglimpse.net/trial/glimpse—-latest.tar.gz
S tar —-xzf glimpse-latest.tar.gz

$ cd glimpse-4.18.6

$./configure

$ make

$

sudo make install

Glimpse requires (when compiled from sources) Flex shared library, on Ubuntu this can be installed by:

S sudo apt-get install libfl-dev

Source indexing and searching

Once Enduro/X project is checked out, built and Glimpse is installed, you may index the source code using following make
target:

$ make index

This is glimpseindex version 4.18.7, 2015.

Indexing "/home/userl/projects/endurox"

Size of files being indexed = 9941954 B, Total #of files = 1664

Index—-directory: "/home/userl/projects/endurox/glimpse_index"
Glimpse-files created here:

http://webglimpse.net/download.php
http://webglimpse.net/download.php

Enduro/X Internal/External Developer Guide 9/49

—-rw—rw—-r—— 1 userl userl 171 Aug 18 07:30 .glimpse_exclude
—rW——————— 1 userl userl 123657 Aug 18 08:59 .glimpse_filenames
—rW——————— 1 userl userl 6656 Aug 18 08:59 .glimpse_filenames_index
—rw——————— 1 userl userl 0 Aug 18 08:59 .glimpse_filetimes
=fjj==———== 1 userl userl 451169 Aug 18 08:59 .glimpse_index
—rW——————— 1 userl userl 306 Aug 18 08:59 .glimpse_messages
—rw——————— 1 userl userl 836 Aug 18 08:59 .glimpse_partitions
=fjj==———== 1 userl userl 380242 Aug 18 08:59 .glimpse_statistics

Built target index

This also generates search command script at project root. So for example, now to search for tpcall, we can use following
command from project root (or any other folder, because "/home/user1/projects/endurox/glim" includes full path to project).

$./glim tpcall
Your query may search about 33% of the total space! Continue? (y/n)y

/home/userl/projects/endurox/tpevsrv/tpevsv.c: if (EXFAIL==(tpcallex (¢
tmpsve, p_svc—>data, p_svc—>len,

/home/userl/projects/endurox/tpevsrv/tpevsv.c: * Event name carried in extradata of <+
tpcallex ()

/home/userl/projects/endurox/libnetproto/proto.c: #define TTC 7 /* tpcall x/

/home/userl/projects/endurox/libatmisrv/tpreturn.c: =* or tpcall wrapper)

In case if some files or directories must be excluded from the index path (used at make index phase), the editing can be done in
glimpse_index/.glimpse_exclude file at project root directory.

Enduro/X Internal/External Developer Guide

10/49

Chapter 4

Enduro/X libraries

The framework is composed by following internal libraries and it’s dependencies:

ATMI Clients

ATMI servers

4

libatmisrv ‘ libatmiclt

libubf libatmi

libnstd

Enduro/X Internal/External Developer Guide 11/49

Chapter 5

Common configuration

Enduro/X users are welcome to use common configuration engine. This engine uses ini files to get key/values from ini section
(and subsection with inheritance). The configuration can point to directory and in that case Enduro/X will read the all configura-
tion files in directory which ends with with ".ini .cfg, .conf, .config". Configuration engine will automatically detect that given
resource is directory and will start to scan for files in directory.

The library keeps all ini file data in memory in hash tables, which also can be iterated as the linked lists. The library can be
instructed to refresh the memory configuration. Refresh function detects any files changed in disk (by time stamp) and reload the
data in memory.

Enduro/X common configuration setup

Enduro/X can be configured by using ini file (or files) instead of environment variables, ndrxdebug.conf and q.conf. Two new
environment variables now are added to the system:

1. NDRX_CCONFIG=/path/to/ini/file/or/directory/with/files

2. And optional NDRX_CCTAG which allows processes to specify the subsection of Enduro/X system settings.
The configurations sections are:

¢ [@global] - environment variables for process (see ex_env(5))
* [@debug] - debug configuration per binary (see ndrxdebug.conf(5))

* [@queue] - persistent queue configurations.
If you use NDRX_CCTAG or specify the "cctag" for ATMI server, then Enduro/X will scan for sections like (e.g. cctag=TAG1):

e [@global/TAG1] and then [@global]
* [@debug/TAG1] and then [@debug]
* [@queue/TAGI] and then [@debug]

cctag can contain multiple tags, which are separated by /. In that case multiple lockups will be made with base section combina-
tion.

Enduro/X Internal/External Developer Guide 12/49

User accessible configuration server

"cconfsrv" XATMI server which can be used by applications to use Enduro/X framework for application configuration. The user
application can call the "@CCONFIG" server in two modes:

A) for getting the exact section;
B) for listing the sections.
See cconfsrv(8) for more details.

The idea behind this is that user can do the programming under Enduro/X in multiple languages (C/Go/Perl/Python/PHP/Node]S)
and these modules typically needs configuration. It would be waste of time if for each of the languages developer would need
to think how to read the configuration from configuration files with native libraries. The Enduro/X offers standard XATMI
micro-service call for reading the ini files in common way for whole application, no matter in which language it is programmed.

But C/C++ programmers can use Enduro/X direct libraries for configuration processing. See the atmitest/test029_inicfg/atmiclt29.c
for sample code.

Common configuration internals

The configuration driving is built in multiple layers:

» Layer 1: Physical file reading by "ini.h" library which gives the callback for any parsed key/value/section;

e Layer 2: Enduro/X code named "inicfg.h" and "inicfg.c". This drives the configuration object loads files into memory. Performs
the refreshes, resolves the sections (with inheritance). Returns the buffers with values.

» Layer 3: High level configuration driving by "cconfig.h" and "cconfig.c". This operates with Enduro/X environment vari-
ables and Enduro/X configuration files. However you may use different env variables for different purposes. For example:
"NDRX_CCONFIG" variable can point to Enduro/X config, but "NDRX_CCONFIG1" can point to your application configu-
ration. And this still is valid setup and keeps files separate.

* Layer 4: "cconfsrv". This is high level API, accessible by transaction protocol (TP) sub-system. See the cconfsrv(8) manpage.
Internally is uses Layer 2 and 3 APIL.

Enduro/X Internal/External Developer Guide

13/49

libnstd

C
1

Layer 1:ini.cfini.h

1

Layer 2: inicfg.c/inicfg.h

A A
Layer 3:
cconfig.hfcconfig.c

A

Layer 4: cconfsrv (XATMI server)

1

User XATMI client/server,
Download the config via tpcall

Enduro/X Internal/External Developer Guide 14/ 49

Chapter 6

Common Debug logging API - TPLOG

Enduro/X offer debug logging facility named "TPLOG". TPLog basically stands for extended user log. The user applications
can use this API to configure TPLog, NDRX and UBF logs to be redirect to specified files, configure levels. Enduro/X introduces
concept of request logging which means that each system request (or session) which processes UBF buffers can be logged to
separate file. Which basically redirects NDRX, UBF and TPLog (user) to specific file. File can be set by tplogsetreqfile(5).

Logging facilities
* NDRX, logging facility code N - this is Enduro/X XATMI framework internal debug logging. Debug string setting for level is
set with keyword ndrx. Facility is defined with macros LOG_FACILITY_NDRX.

* UBF, logging facility code U - this is UBF library logs. In debug string level is set with keyword ubf. Facility is defined with
macros LOG_FACILITY_UBF.

* TP, logging facility code ¢ - this is user logs. In debug string level is set with keyword #p. Facility is defined with macros
LOG_CODE_TP. This is process based logging.

» TP_THREAD, logging facility code T - this is user logs, set on per thread basis. The log level is set with keyword #p. Facility
is defined with macros LOG_FACILITY_TP_THREAD.

TP_REQUEST, logging facility code R - this is user logs, set on per thread/request basis. The log level is set with keyword #p.
Facility is defined with macros LOG_FACILITY_TP_REQUEST.

* NDRX_THREAD, logging code n - logs the Enduro/X internals on thread basis.

UBF_THREAD, logging code u - logs UBF internals on thread basis.
* NDRX_REQUEST, logging code m - logs the Enduro/X internals on per request basis.

e UBF_REQUEST, logging code v - logs UBF internals on per request basis.

Hierarchy of the loggers (facilities)

The loggers output the debug content in following order of the facilities status (i.e. definition of current logger):

o If TP_REQUEST is open (debug file set), then all logging (TP) will go here. There will be no impact if TP_REQUEST log
level is different. The request logging can be open by tplogsetreqfile(3). Logger can be closed by tplogclosereqfile(3).

e If TP_THREAD is open (debug file set), then all logs of TP will log here. Thread logger can be open by doing tplogcon-
fig(LOG_FACILITY_TP_THREAD,...). Thread logger can be closed by tplogclosethread(3)

Enduro/X Internal/External Developer Guide 15/49

* The above principles applies to NDRX_THREAD/REQUEST and UBF_THREAD/REQUEST too.

* NOTE: That that Thread and request logger might have lower or the same log levels as for main loggers. The higher log level
than main log level will be ignored.

If there is no TP_REQUEST or TP_THREAD facilities open, then logging is done on per process basis, where there are 3
facilities which are always open:

* NDRX, here XATMI sub-system is logged. It can be configured to use separate file by tplogconfig(3).
* UBF, here UBF sub-system is logged. It can be configured to use separate file by tplogconfig(3).
e TP, here TPLog sub-system is logged. It can be configured to use separate file by tplogconfig(3).

Debug string format

The debug string format is described in ndrxdebug.conf(5) manpage. basically it is following:

* ndrx=<Debug level> ubf=<Debug level> tp=<Debug level> bufsz=<Number of line to write after doing fflush> file=<log file
name, if empty, then stderr>

The debug level is one of the following:

1. No logging output
. Fatal
. Error

2
3
4. Warning
5. Program info
6

. Debug

Brief of logging functions

Enduro/X debugging API offers following list of the functions:

Part of the standard library (ndebug.h)

* void tplogdump(int lev, char *comment, void *ptr, int len); - Dumps the binary buffer (hex-dump) to current logger

* void tplogdumpdiff(int lev, char *comment, void *ptri, void *ptr2, int len); - Compares two binary buffers and prints the
hex-dump to current logger

* void tplog(int lev, char *message); - Prints the message to current logger, at given log level
* int tploggetreqfile(char *filename, int bufsize); - Get the current request file (see the next chapter)

* int tplogconfig(int logger, int lev, char *debug_string, char *module, char *new_file); Configure logger. The loggers can be
binary ored and with one function call multiple loggers can be configured. lev is optional, if not set it must be -1. Debug string
is optional, but if have one then it can contain all elements. module is 4 symbols log module code using in debug lines. new_file
if set (not NULL and not EOS(0x00)) then it have priority over the file present in debug string.

* void tplogclosereqfile(void); - Close request file. The current logger will fall-back to either thread logger (if configured) or to
process loggers.

* void tplogclosethread(void); - Close thread logger, if it was configured.

* void tplogsetreqfile_direct(char *filename); - Set the request file, directly to logger. This operation is used by next function
which allows to store the current request logging function in the XATMI UBF buffer.

Enduro/X Internal/External Developer Guide 16/49

Part of the XATMI library (xatmi.h)

* int tplogsetreqfile(char *data, char *filename, char *filesvc); - Set the request file. If data is UBF buffer allocated by
*tpcalloc(3), then it will search for EX NREQLOGFILE field presence there. If field present, then TP_REQUEST logger will
be set to. If field not present, but filename is set (not NULL and not EOS), then request logger will be set to this file and name
will be loaded into buffer. If file name is not in the buffer and not in the filename but filesvc present then this XATMI service
will be called with data buffer and it is expected that field EX_NREQLOGFILE will be set which then is used for logging.

* int tploggetbufreqfile(char *data, char *filename, int bufsize); - Get the request logging file name from XATMI buffer, basically
this returns EX_NREQLOGFILE value.

* int tplogdelbufreqfile(char *data); - Delete the request logging information from XATMI buffer.

* void tplogprintubf(int lev, char *title, UBFH *p_ub); - print the UBF buffer to current logger.

Request logging concept

Request logging is concept when each user session or transaction which is processed by multiple XATMI clients and servers, are
logged to single trace file. This is very useful when system have high load with request. Then administrators can identify single
transaction and with this request log file it is possible to view full sequence of operation which system performed. You do not
need anymore to grep the big log files (based on each service output) and glue together the picture what have happened in system
for particular transaction.

The basic use of the request logging is following:
Client process:
/* read the request from network & parse
* get the transaction subject (for example bank card number (PAN))
+ open the log file for each bank card request
* e.g.
*/
tplogsetreqgfile (&p_ub, "/opt/app/logs/pan_based/<PAN>_<Time_stamp>", NULL);
tplog ("About to authorize");
tpcall ("AUTHORIZE", &p_ub, ...);
/* reply to network =*/

tplog("Transaction complete");

/* close the logger after transaction complete =/
tplogcloseregfile();

Server process - AUTHORIZE service

void AUTHORIZE (TPSVCINFO *p_svc)
{
UBFH *p_ub = (UBFH x)p_svc—>data;

/+ Just print the buffer =/
tplogsetreqgfile ((char *x*)&p_ub, NULL, NULL);

tplogprintubf (log_debug, "AUTHORIZE got request", p_ub);
tplog(log_debug, "Processing...!");

/+ do the work =*/

Enduro/X Internal/External Developer Guide

17 /49

/* close the request file as we are done. x*/
tplogclosereqgfile();

tpreturn(TPSUCCESS,
oL,
(char *)p_ub,
oL,
0L);

Lest assume that for our transaction logfile is set to: /opt/app/logs/pan_based/5555550000000001_1475008709 then transaction

could look like:

Process based
HATMI, UBF, TP kogging

FATMI client

Pequest logging.
Parse message & tplogs et reqfile{} all process logs request
build UBF bufier to single file
(355555 DODMMMM01_1AT 5008 T

EX_NREQLOGFILE joptiapp/logs/pan_basedf555555000 0000001_147500 8700
CARD_NUMBER 5555550 000000001
AMOUNT 175.99 tpcalll)

Y tplogs etregfile(}

KATMI server

Understanding the format of log file

For example given code:
#include <ndebug.h>
int main (int argc, char xxargv)

{
tplog (5, "Hello from function logger");

TP_LOG (log_debug, "Hello from macro logger [logging level %d]",

return 0;

Will print to log file following messages:

log_debug) ;

Enduro/X Internal/External Developer Guide 18/49

t:USER:5:testlpc :11064:000:20160928:100225252:/tplog.c:0412:Hello from function logger
t:USER:5:testlpc :11064:000:20160928:100225252:0gtest.c:0007:Hello from macro logger [<
logging level 5]

So in general log line format is following:

<LOGGER_FACILITY>:<MODULE>:<LOG_LEVEL>:<HOSCR>:<PID>:<OS_THREAD_ID>:<THREAD_ID>:<DATE>:< <&
TIME_MS>:<SOURCE_FILE>:<LINE>:<MESSAGE>

Where:

* LOGGER_FACILITY - is logger code which to which message is logged, i.e. N - NDRX process based logger, U - UBF
process based logger, ¢ - TP log, process based, T - TP thread based logger, R - TP request logger, n - Enduro/X internals
(NDRX) thread logger, m - Enduro/X internals (NDRX) request logger, u - UBF thread logger, v - UBF request logger.

* MODULE - 4 char long logger, NDRX and UBF ’ or user given code by tplogconfig(3). Default is "USER.
* LOG_LEVEL - message log level digit.

* HOSTCR - hostname crc32.

* PID - process id.

e OS_THREAD_ID - Operating system thread id (provided by libc or so).

e THREAD_ID - internal Enduro/X thread identifier.

* DATE - YYYYMMDD time stamp of the message (date part) in local TZ.

e TIME_MS - HHmmssSSS - time stamp of the message (time part) in local TZ.

* SOURCE_FILE - last 8 symbols of C/C++ source file from which macro logger was called.

* LINE - line number of the message in source code (where the macro logger was called).

* MESSAGE - logged user message.

Enduro/X Internal/External Developer Guide 19/49

Chapter 7

Queuing mechanisms

This chapter describes different Enduro/X message transport mechanisms which are supported by Enduro/X. Enduro/X provides
support for different transaction backends and there is no real difference for developer on which transport is used, except the
performance and system resource administration aspects

Linux epoll and FreeBSD kqueue

Enduro/X originally was developed for GNU/Linux kernels where resource polling sub-system i.e. epoll() can handle Posix
queue handlers. This is linux non-standard feature which greatly supports system development. FreeBSD operating system also
supports polling and Posix queues. This allows to build one queue - multiple servers architecture (even for ATMI server processes
waiting on different queues). However, this this feature limits platform to be working on Linux and FreeBSD only.

SERVER BINARY 1 SERVER BINARY 2 SERVER. BINARY 3
Enduro/¥ extension

that custom file descriptors
can be monitored together withwye
ATMI services

epoll(} on Posix gueues. < Custom file descriptor
Does wakeup calls to ATMI servers, that new message available. (e.g. socket)

1

Posix queue: /doml,svc, TESTSVC
F Y

Client binary, does tpcall("TESTSVC") service

System V mode

Starting from Enduro/X version 6, there are added sub-system for System V IPC queues. With this supports, good performance
(about 70-80% from the epoll/kqueue) is reached for Unix platforms, i.e. Oracle Solaris and IBM AIX. The mechanisms as for
epoll can give true single-queue multiple servers approach for perfect load balancing between local processes. By default each
XATMI server process opens it’s own job request queue, but this can be configured, so that "request address" is used, i.e. it
defines one queue name on which all XATMI servers must advertise the same services.

Enduro/X Internal/External Developer Guide 20/49

The implementation for System V is quite complicated, because these queues (see msgrev(), msgsnd() system calls) does not
offer any timeout control and secondly no form of polling on multiple queues are allowed. Thus these additional work semantics
must be emulated.

Common approaches for XATMI clients and servers are following:

1. System V message queue IDs are mapped to string for queue names, which are used internally by Enduro/X. The mapping
is done in two new shared memory segments whose size is controlled by NDRX MSGQUEUESMAX environment
variable, see ex_env(5).

2. The timeouts are controlled by one new additional thread - event thread, to which via unnamed pipe particular queue
descriptor pointer is submitted together with timeout. The thread then goes to sleep till the timeout. If the (main) thread
which did queue operation is still in the queue call, it is interrupted by pthread_kill() system call. There are timestamp
and sequence markers for each blocked System V IPC queue calls, so that timeout knows that man thread is in particular
state, and have not reached the next call. If main thread has been woken up, then timeout is discarded once reached. Event
thread performs timed poll on unnamed pipe, so that it is blocked till calculated next wake-up/timeout.

3. Special care shall be taken when process forking is required. As event thread is common for XATMI servers and clients,
the fork by main thread will terminate those threads at un-determined point. Thus if new process wishes to continue to
operate with XATMI session special approaches shall be done when forking Enduro/X processes. See sections in text
regarding process forking.

For XATMI servers the approach is further extended, so that:

1. There is one more additional thread listening for admin messages (i.e. pings and shutdowns). Once the message is received,
it is placed in internal queue for the main server poller queue. If main thread is in blocked state of System V queue, it is
waken up by pthread_kill(). If main thread was doing something else, then before doing next System V message receive,
it checks the internal message queue and picks up the admin message from there.

2. As Enduro/X provides extensions for file descriptor polling, System V interfaces provides this API too. The user file
extensions are put in the even thread’s poll() structure. If event is noticed on user file descriptor, the event is sent to
corresponding main thread and during that time, the file descriptor is removed from event thread, because otherwise it will
signal again that there is something on the user FD (as main and even threads are async, and even thread might run faster
than main thread). Thus user FD is enabled for polling only when main thread returns after the processing back to waiting
for message.

Enduro/X Internal/External Developer Guide 21/49

XATMI SERVER

Aux Bvent thread
Enduny/X extension

SERVER BINARY 1, that custom file descriptors
SRVID 101 SERVER BIMARY 2, SERVER BINARY 3, can be menitored together with
SRVID 102 SRVID 103 ATMI services
L

h : Q timeout &
\ Command pipe file descriptor poll
“Tout

System WV msgrov() for RQADDR or per server ADDR gueue

Sy
/ f o
 a. th,_plng‘smtjuwn Aux Admin thread
Q: /dom1,srv,rqaddr,TEST1 Q: /dom1,srv.addr,svbin2, 102 Q: /dom1,srv.addr,svbind, 103 b
Y. A msgrevi) € 0: jdom1,srv,admin, sv3,3013,8262

Map the gueue from QIDs to Pesix name via SHM: /dev/shmidoml,shm,s2p

QID: 22104 QID: 22105 QID:I_Z.:'!‘_I.DE

Shared memory entries in jdom 1,shm,swcinfo,
Infos: Service "TESTSVC" available on server QIDs 22104, 22105, 22106 (including
number of servers available for ROADDRs).

Max servers per service contrelled by NDRX MAXSVCSRVS env variable.
During the call, service is selected by Round-Robin mode by caller binary.
Service shared memory entry is protected by System-\ semaphore.
Number of semaphores is controlled by NDRX MRSEMS env var.

%

Client binary, does tpcall("TESTSVC") service

Poll mode

Starting from Enduro/X version 3, there is support for other Posix compatible Operating Systems. Where possible Posix queues
are used. If no Queue support built in, for example Apple OSX, then emulated Posix queues are used. For these platforms,
the caller processes does choose the queue where to send the message in round-robin mode. For each service shared memory
contains list of server IDs providing the service. In round robin mode the server id is selected, and caller sends the service to

queue (e.g. doml,svc, TESTSVC, 102 where 102 is server id.).

Enduro/X Internal/External Developer Guide 22/49

I Y

SERVER BIMARY 1, SERVER BINARY 2, SERVER BIMARY 3, Custom file descripter
SEVID 101 SRVID 102 SRVID 103 {e.g. socket)
every senver proces does monitor: poll{Unnamed pipe) + custom fds e —
Endurg/X extension

that custom file descriptors

)) L . can be monitored together with
If message recieved,) desciptor is piped to main ATMI server thread ATMI Services

Every server process hawve O moniter thread with mg notify(), SIG USR2 in use

7 1 ~.

0: /doml,swc, TESTSVC, 101 Q: jdom1,svc, TESTSVC, 102 0: fdoml,sve, TESTSVC, 103
.. A -y

Shared memory entries in /doml,shm,svcinfo,

Infos: Service "TESTSVC" available on server |Ds 101, 102, 103.
Max servers per service controlled by NDRX MAXSWVCSEVS env variable.
During th call, service is selected by Round-Robin mode by caller bina g

Service shared memery entry is protected by System-\V semaphore.

Mumber of semaphores is controlled by NDRX NRSEMS env var.

[

Client binary, does tpcall{"TESTSVLC") service

For other unix support, mq_notify() call for each open queue is installed, by employing SIGUSR2. Signal handling is done in
separate thread. The main ATMI server thread is doing poll() in unnamed pipe. When event from mq_ sub-system is received, it
writes the queue descriptor id to unnamed pipe and that makes main thread to wake up for queue processing. The poll() for main
thread supports Enduro/X extensions to add some other resource for polling (e.g. socket fd.)

Enduro/X Internal/External Developer Guide 23/49

Chapter 8

Object-API

Enduro/X provides Object API functions. This is meant to be used with integration into programming languages and frameworks,
where cooperative multi-threading is used. This API also is suitable for systems like Node.JS where system call, e.g. C lang call
can result in different operating system thread. This fact can cause lot of issues, for example, in cooperative multi-threading two
concurrent fpacall() requests can return results for different cooperative threads, which will cause them to drop the response and
both calls with might finish with time-out.

Thus Enduro/X provides following header files for Object-API:

* odebug.h - ATMI Object based debugging

oubf.h - ATMI Object based UBF operations
* oatmi.h - ATMI operations via ATMI Object

* oatmisrv.h - ATMI server operations via ATMI Object.

The API basically consists of all UBF and ATMI functions, they are prefixed with letter O and as first parameter all of them
consume TPCONTEXT _T typed parameter. Which basically is pointer to heap stored ATMI Object. This ATMI Object also
includes links to Standard library and UBF library heap allocated objects.

Every Object-API function basically does following:

1. Set (call of tpsetctxt()) the current thread TLS to passed in context;
2. Call the actual UBF/ATMI function;

3. Unset/get (call of psetctxt()) the thread local data;

During the Enduro/X C library works, it is assumed that is not preemptive for cooperative threads. Thus above scheme will work
for every framework that comply with rule (and mostly it does, because it will break the rules of library C/C++ processing).

The typical code for Object API would be following:

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#include <oatmi.h>
#include <oubf.h>
#include <odebug.h>
#include <Exfields.h>

int main(int argc, char xxargv)
{

int ret = 0;

Enduro/X Internal/External Developer Guide

24 /49

out:

int cdl;

UBFH *p_ubl;

long rsplen;

/+ Allocate new context aka Object =*/
TPCONTEXT_T ctxl = tpnewctxt ();

/+ Initialise client session =*/
if (SUCCEED!=0Otpinit (&ctxl, NULL))
{
/+ print the thread based logs =*/
ONDRX_LOG (&ctx1l, log_error, "TESTERROR: Failed to Otpinit 1: %s",
Otpstrerror (&ctxl, Otperrno (&ctxl)));
ret = -1;
goto out;

/+«Do some client based logging =*/
ONDRX_LOG (&ctxl, log_always, "Hello from CTX1");

if (NULL==(p_ubl = (UBFH x)Otpalloc(&ctxl, "UBF", NULL, 8192)))
{
ONDRX_LOG (&ctxl, log_error, "TESTERROR: Failed to Otpalloc ubl: %s",
Otpstrerror (&ctxl, Otperrno(&ctxl)));
ret = -1;
goto out;

/* set some buffer value */
if (SUCCEED!=0CBchg (&ctxl, p_ubl, EX_CC_CMD, 0, "1", 0L, BFLD_STRING))
{
ONDRX_LOG (&ctxl, log_error, "TESTERROR: OCBchg() failed %s",
OBstrerror (&ctxl, OBerror (&ctxl)));
ret = -1;
goto out;

/* call the server =/
if (FAIL==Otpcall (&ctxl, "SOMESVC", (char x)p_ubl, 0L, (char *x)é&p_ubl, &rsplen,
{
ONDRX_LOG (&ctxl, log_error, "TESTERROR: Failed to Otpcall 1: %s",
Otpstrerror (&ctxl, Otperrno (&ctxl)));
ret = -1;
goto out;

/+ free the buffer =/
Otpfree(&ctxl, (char x)p_ubl);

/* terminate ATMI client session */
if (SUCCEED!=Otpterm(&ctxl))
{
ONDRX_LOG (&ctx1l, log_error, "TESTERROR: Failed to terminate client 1",
Otpstrerror (&ctxl, Otperrno (&ctxl)));
ret = -1;
goto out;

/* free the NSTD/UBF/ATMI objects =/
tpfreectxt (ctxl);

0L))

Enduro/X Internal/External Developer Guide 25/49

return ret;

Build with:

$ gcc test.c -latmi -lubf -lnstd -lpthread -lrt -1lm -1d1

See atmitest/test032_oapi/atmiclt32.c for more sample code.

Class model

For programming languages that supports classes or objects, following class model will be used for Enduro/X bindings.

ATMICtx ATMIError| |NSTDError UBFError

ATMIBuf
——<>}+Ctx: ATMICtx

Typed]SON TypedUBF TypedCarray TypedString

This diagram is based on endurox-go package, which uses structures and special functions that are binded to structure. Basically
that is the same as classes.

This model might be implemented for Node.js and Platform Script.

Enduro/X Internal/External Developer Guide 26/49

Chapter 9

Generating source code with Enduro/X genera-
tors

Enduro/X xadmin command line utility comes with built in generators. Currently following generator targets are available:

ubf tab - Generate UBF table header files. This target can generate include file for C, or Go package which constants of the
field definitions.

* cserver - Generate C server. The server can have a common configuration. Wizard offers some options like building a makefile
and using a UBF buffer.

* ¢ client - Generate C client application. This make sample C client app which in case if UBF buffer is select for data buffer,
the sample call is made to TESTSV XATMI service.

* go server - Go server which depends on endurox-go package. Thus in project path the endurox-go package must be installed.
(See the sample bellow).

* go client - Generate Go XATMI client process. As with Go server, it requires that endurox-go is installed in project path. That
can be done by $ go get https://github.com/endurox-dev/endurox-go

The target can be invoked by running $ xadmin gen <target>, for example:

$ xadmin gen c server
Enduro/X 3.4.3, build Feb 10 2017 00:34:28, using poll for DARWIN (64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2015, 2016 Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

0: srvname :XATMI Server Name (binary) [testsv]:
1: svcnm :Service name [TESTSV]:

2: useubf :Use UBF? [y]: n

4: genmake :Gen makefile [y]:

**% Review & edit configuration xxx

0: Edit srvname :XATMI Server Name (binary) [testsv]:
1: Edit svcnm :Service name [TESTSV]:

2: Edit useubf :Use UBF? [n]:

4: Edit genmake :Gen makefile [y]:

c: Cancel
w: Accept, write

https://github.com/endurox-dev/endurox-go

Enduro/X Internal/External Developer Guide 27 /49

Enter the choice [0-5, ¢, wW]: W
C server gen ok!

$ make

cc —-c -0 testsv.o testsv.c -I../ubftab

cc -0 testsv testsv.o -latmisrvinteg -latmi -lubf -lnstd -lpthread -1dl -1m
$

Xadmin’s package also includes provision scripts which will setup runtime quickly. The command is $ xadmin provision.

Implementing custom generators

Enduro/X xadmin can be configured with custom generators. The directory or script file name where xadmin looks for Platform
Scripts, are configured with following configuration resources:

Building sample application generators

In this section we will make an application where C client code will invoke Go server. The IPC will use UBF buffer, with test
fields which are provided by ubf tab generator. Also this example assumes that you have installed enduro/x and endurox-go
packages to your system and kernel parameters are configured (e.g. queue settings in case of Linux).

Prepare project folder3

Lets assume our project will be made at STESTHOME. The sources (with sub-projects) will go under $TESTHOME/src. This
structure is required for Go projects. For Linux operating system we will set STESTHOME to /home/user1/app2.

useradd -m userl

su — userl

mkdir /home/userl/app2

export TESTHOME=/home/userl/app2
mkdir S$STESTHOME/src

W W Uy H= S

Generate UBF table for both C & Go

The application will communicate via Unified Buffer Format (UBF) buffer. The test field definitions will be used for this
application. Firstly lets generate C headers:

$ mkdir $TESTHOME/src/ubftab
S cd STESTHOME/src/ubftab

$ xadmin gen ubf tab
Enduro/X 3.4.3, build Feb 10 2017 00:26:22, using epoll for LINUX (64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2015, 2016 Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

Logging to ./ULOG.20170211

0: table_name :UBF Table name (.fd will be added) [test]:
1: base_number :Base number [6000]:

2: testfields :Add test fields [y]:

3: genexfields :Gen Exfields [y]:

Enduro/X Internal/External Developer Guide 28/49

4: genmake :Gen makefile [y]:
5: makelang :Target language (c/go) I[c]:

xx Review & edit configuration xxx

0: Edit table_name :UBF Table name (.fd will be added) [test]:
1: Edit base_number :Base number [6000]:

2: Edit testfields :Add test fields [y]:

3: Edit genexfields :Gen Exfields [y]:

4: Edit genmake :Gen makefile [y]:

5: Edit makeLang :Target language (c/go) I[c]:

c: Cancel

w: Accept, write

Enter the choice [0-6, c, wW]: W
Gen ok!

Now we see that test.fd.h is generate. Lets generate Go definitions. Before that we will set GOPATH to project root.

$ cd STESTHOME

$ export GOPATH=‘pwd‘

$ cd STESTHOME/src/ubftab

$ xadmin gen ubf tab

Enduro/X 3.4.3, build Feb 10 2017 00:26:22, using epoll for LINUX (64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2015, 2016 Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

Logging to ./ULOG.20170211

0: table_name :UBF Table name (.fd will be added) [test]:
1: base_number :Base number [6000]:

2: testfields :Add test fields [y]:

3: genexfields :Gen Exfields [y]:

4: genmake :Gen makefile [y]:

5: makelang :Target language (c/go) [c]: go

**% Review & edit configuration xxx

0: Edit table_name :UBF Table name (.fd will be added) [test]:
1: Edit base_number :Base number [6000]:

2: Edit testfields :Add test fields [y]:

3: Edit genexfields :Gen Exfields [y]:

4: Edit genmake :Gen makefile [y]:

5: Edit makelang :Target language (c/go) [go]:

c: Cancel

w: Accept, write

Enter the choice [0-6, c, wW]: W
Gen ok!

Once the files are generated, we can run off the make:
S cd STESTHOME/src/ubftab
$ make

make —-f Mclang
SSOURCES is [./test.fd Exfields]

Enduro/X Internal/External Developer Guide 29/49

SOUTPUT is [./test.fd.h Exfields.h]
SFIELDTBLS is [./test.fd,Exfields]
make[1l]: Entering directory ‘STESTHOME/src/ubftab’
mkfldhdr —-m0 -pubftab
To control debug output, set debugconfig file path in $NDRX_DEBUG_CONF
N:NDRX:5: 732:2ae627e394c0:000:20170211:163548263:f1dhdr.c:0229:0utput directory is [.]
:NDRX:5: 732:22e627e394c0:000:20170211:163548263:f1dhdr.c:0230:Language mode [0]
:NDRX:5: 732:2ae627e394c0:000:20170211:163548263:fldhdr.c:0231:Private data [ubftab]
:NDRX:5: 732:2ae627e394c0:000:20170211:163548263:f1dhdr.c:0243:Use environment variables
:UBF :5: 732:22e627e394c0:000:20170211:163548263:dtable.c:0114:Using NDRX_UBFMAXFLDS: —
16000
:NDRX:5: 732:2ae627e394c0:000:20170211:163548263:f1dhdr.c:0303:enter generate_files()
:UBF :5: 732:2ae627e394c0:000:20170211:163548263:fldhdr.c:0138:Load field dir [STESTHOME/ <
src/ubftab]
U:UBF :5: 732:2ae627e394c0:000:20170211:163548263:f1ldhdr.c:0149:About to load fields list <«
[./test.fd,Exfields]
N:NDRX:5: 732:2ae627e394c0:000:20170211:163548264:f1dhdr.c:0369:STESTHOME/src/ubftab/./ <+
test.fd processed OK, output: ./test.fd.h
N:NDRX:5: 732:2ae627e¢394c0:000:20170211:163548264:f1dhdr.c:0369:$TESTHOME/src/ubftab/ <«
Exfields processed OK, output: ./Exfields.h
N:NDRX:5: 732:2ae627e394c0:000:20170211:163548264:f1dhdr.c:0256:Finished with : SUCCESS
make[l]: Leaving directory ‘$STESTHOME/src/ubftab’
make —-f Mgolang
SSOURCES is [./test.fd Exfields]
SOUTPUT is [./test.fd.go Exfields.go]
SFIELDTBLS is [./test.fd,Exfields]
make[1l]: Entering directory ‘STESTHOME/src/ubftab’
mkfldhdr —-ml -pubftab
To control debug output, set debugconfig file path in $NDRX_DEBUG_CONF
N:NDRX:5: 736:2aad91d474c0:000:20170211:163548271:f1dhdr.c:0229:0utput directory is [.]
:NDRX:5: 736:22ad91d474c0:000:20170211:163548271:f1dhdr.c:0230:Language mode [1]
:NDRX:5: 736:2aad91d474c0:000:20170211:163548271:fldhdr.c:0231:Private data [ubftab]
:NDRX:5: 736:2aad91d474c0:000:20170211:163548271:f1dhdr.c:0243:Use environment variables
:UBF :5: 736:22ad91d474c0:000:20170211:163548271:dtable.c:0114:Using NDRX_UBFMAXFLDS: <+
16000
:NDRX:5: 736:2aad91d474c0:000:20170211:163548271:f1dhdr.c:0303:enter generate_files()
U:UBF :5: 736:2a2ad91d474c0:000:20170211:163548271:fldhdr.c:0138:Load field dir [STESTHOME/ <«
src/ubftab]
U:UBF :5: 736:2aad91d474c0:000:20170211:163548271:f1dhdr.c:0149:About to load fields list <«
[./test.fd,Exfields]
N:NDRX:5: 736:2a2ad91d474c0:000:20170211:163548271:f1dhdr.c:0369:STESTHOME/src/ubftab/./ «
test.fd processed OK, output: ./test.fd.go
N:NDRX:5: 736:2aad91d474c0:000:20170211:163548271:£f1dhdr.c:0369:STESTHOME/src/ubftab/ <«
Exfields processed OK, output: ./Exfields.go
N:NDRX:5: 736:2aad91d474c0:000:20170211:163548271:f1dhdr.c:0256:Finished with : SUCCESS
go build -o ubftab x.go
go install ./...
make[1l]: Leaving directory ‘S$STESTHOME/src/ubftab’

c=zz2z

c =

c=z2z22=z

=

$ 1s -1

total 72

—-rw—rw-r—— 1 userl userl 9641 feb 11 16:25 Exfields
—-rw—rw-r—-— 1 userl userl 6079 feb 11 16:35 Exfields.go
—-rw-rw-r—— 1 userl userl 7614 feb 11 16:35 Exfields.h
-rw—-rw-r—— 1 userl userl 145 feb 11 16:25 Makefile
—-rw—rw-r—-— 1 userl userl 492 feb 11 16:25 Mclang
—-rw—rw-r—— 1 userl userl 562 feb 11 16:27 Mgolang
—-rw—rw-r—— 1 userl userl 1301 feb 11 16:25 test.fd
—-rw—rw-r—-— 1 userl userl 1532 feb 11 16:35 test.fd.go
—-rw—-rw-r—— 1 userl userl 1999 feb 11 16:35 test.fd.h
—-rw—rw-r—— 1 userl userl 2882 feb 11 16:35 ubftab
—-rw—rw—-r—— 1 userl userl 15464 feb 11 16:27 ULOG.20170211

Enduro/X Internal/External Developer Guide

30/49

S head -

nl0 test.fd.h

#ifndef _ TEST_FD

#define
/%

/%

#define
#define
#define
#define
#define
#define

TEST_FD
fname bfldid
T_CHAR_FLD
T_CHAR_2_FLD
T_SHORT_FLD
T_SHORT_2_FLD
T_LONG_FLD
T_LONG_2_FLD

*/
*/
((BFLDID32) 67114875) / *
((BFLDID32)67114876) /*
((BFLDID32) 6021) /*
((BFLDID32) 6022) /*
((BFLDID32)33560463) /*
((BFLDID32)33560464) / *

So it have installed a ubftab package, and generated test.fd.h file.

Generate C client code & make

number:
number :
number :
number:
number :
number :

6011
6012
6021
6022
6031
6032

type:
type:
type:
type:
type:
type:

char =/
char */
short «*/
short */
long =*/
long =*/

Now lets generate a C client code which will send the UBF buffer to Go server. The generator provides C sample client, let’s use

1t.

$ mkdir $TESTHOME/src/clt

$ cd STE

S xadmin
Enduro/X

STHOME/src/clt

gen c client

3.4.3, build Feb 10 2017 00:26:22,

using epoll for LINUX

(64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
16 Mavimax, Ltd. All Rights Reserved.

Copyrigh

t (C) 2015, 20

This software is released under one of the following licenses:

(will be done

(binary)

[testcl]:

(will be done

. ./<name>)

[testcl]:

will read config if set)

. ./<name>)

[ubftab]:

[1:

[ubftab] :

will read config if set) []:

GPLv2 (or later) or Mavimax’s license for commercial use.
Logging to ./UL0OG.20170211
0: cltname :XATMI Client Name (binary)
1: useubf :Use UBF? [y]:
2: ubfname :UBF include folder name
3: genmake :Gen makefile [y]:
4: config :INI File section (optional,
xx Review & edit configuration xxx
0: Edit cltname :XATMI Client Name
1: Edit useubf :Use UBF? [y]:
2: Edit ubfname :UBF include folder name
3: Edit genmake :Gen makefile [y]:
4: Edit config :INI File section (optional,
c: Cancel
w: Accept, write
Enter the choice [0-4, c, wW]: W
C client gen ok!
S make

cc -c -o testcl.o testcl.c -I../ubftab
stcl testcl.o —-latmiclt -latmi -lubf -lnstd -lpthread -1lrt -1dl1 -1m

cc -0 te

C Client have been generated OK and built ok.

Enduro/X Internal/External Developer Guide 31/49

Generate Go server code & make

Now lets generate Go server. Before we make the Go app, we need to get the endurox-go package.

cd $TESTHOME

go get github.com/endurox—-dev/endurox—go

mkdir $TESTHOME/src/srv

cd $TESTHOME/src/srv

xadmin gen go server

Enduro/X 3.4.4, build Feb 11 2017 16:57:21, using epoll for LINUX (64 bits)

U Wy O

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2015, 2016 Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

Logging to ./UL0G.20170211

0: svname :XATMI Server Name (binary) [testsv]:

1: svcname :Service name [TESTSV]:

2: useubf :Use UBF? [y]:

3: ubfname :UBF package name [ubftab]:

4: genmake :Gen makefile [y]:

5: config :INI File section (optional, will read config if set) []:

xx Review & edit configuration xxx

0: Edit svname :XATMI Server Name (binary) [testsv]:

1: Edit svcname :Service name [TESTSV]:

2: Edit useubf :Use UBF? [y]:

3: Edit ubfname :UBF package name [ubftab]:

4: Edit genmake :Gen makefile [y]:

5: Edit config :INI File section (optional, will read config if set) []:

c: Cancel

w: Accept, write

Enter the choice [0-5, ¢, w]: w
Go server gen ok!

$ make
go build -o testsv *.go

As we see test server was built ok. Now next step is to configure a runtime system. With provisioning of the configuration files
and adding testsv to boot application boot sequence.

Provision runtime and put binaries symlinks

To create a runtime system, we will use $ xadmin provision command. This command allows to register one server to ndrxcon-
fig.xml. For demo application purposes this is fully fine. The provision will be done in root directly of "bankapp2".

$ cd STESTHOME

$ 1s -1
total 8
drwxrwxr-x 3 userl userl 4096 feb 11 16:27 pkg
drwxrwxr—-x 8 userl userl 4096 feb 11 17:05 src

$ xadmin provision
Enduro/X 3.4.4, build Feb 11 2017 16:57:21, using epoll for LINUX (64 bits)

Enduro/X Internal/External Developer Guide 32/49

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2015, 2016 Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

Logging to ./UL0G.20170212

/ /___ / /_ _/_/
/) /N __ /))\ _/_] | /
VA S A A A S A A S A A S A S A S \
/ /] /N, _/__,_/_/ ___ /_/ /_/1_|
Provision
Compiled system type....: LINUX
0: gpath :Queue device path [/dev/mqueue] :
1: nodeid :Cluster node id [1]:
2: gprefix :System code (prefix/setfile name, etc) [testl]: app2
3: timeout :System wide tpcall () timeout, seconds [90]:
4: appHome :Application home [$TESTHOME] :
6: binDir :Executables/binaries sub-folder of Apphome [bin]:
8: confDir :Configuration sub-folder of Apphome [conf]:
9: logDir :Log sub-folder of Apphome [log]:
10: ubfDir :Unified Buffer Format (UBF) field defs sub-folder of Apphome [ubftab]:
11: tempDir :Temp sub-dir (used for pid file) [tmp]:
12: installQ :Configure persistent queue [y]:
13: tmDir :Transaction Manager Logs sub-folder of Apphome [tmlogs]:
14: gdata :Queue data sub-folder of Apphone [gdata]:
15: gSpace :Persistent queue space namme [SAMPLESPACE]:
16: gName :Sample persistent queue name [TESTQ1]:
17: gSvc :Target service for automatic queue for sample Q [TESTSVC1]:
18: eventSwv :Install event server [y]:
19: cpmSv :Configure Client Process Monitor Server [y]:
20: configSv :Install Configuration server [y]:
21: bridge :Install bridge connection [y]:
22: bridgeRole :Bridge —-> Role: Active(a) or passive(p)? [a]:
24: ipc :Bridge -> IP: Connect to [172.0.0.1]:
25: port :Bridge —-> IP: Port number [21003]:
26: otherNodeId :0ther cluster node id [2]:
27: ipckey :IPC Key used for System V semaphores [44000]:
28: ldbal :Load balance over cluster [0]:
29: ndrxlev :Logging: ATMI sub-system log level 5 - highest (debug), 0 - minimum (off) <+
[5]:2
30: ubflev :Logging: UBF sub-system log level 5 - highest (debug), 0 - minimum (off) <>
[1]:
31: tplev :Logging: /user sub-system log level 5 - highest (debug), 0 - minimum (off <
) [5]:
32: usvl :Configure User server #1 [n]: y
33: usvl_name :User server #1: binary name []: testsv
34: usvl_min :User server #1: min [1]:
35: usvl_max :User server #1: max [1]:
36: usvl_srvid :User server #1: srvid [2000]:
37: usvl_cctag :User server #1l: cctag []:

38: usvl_sysopt :User server #l: sysopt []:

Invalid value: Min length 1

38: usvl_sysopt :User server #1l: sysopt []: —-e ${NDRX_APPHOME}/log/testsv.log
39: usvl_appopt :User server #l: appopt []:

50: ucll :Configure User client #1 [n]:

Enduro/X Internal/External Developer Guide 33/49
55: addubf :Additional UBFTAB files (comma seperated), can be empty []: test.fd
56: msgsizemax :Max IPC message size [56000]:
57: msgmax :Max IPC messages in queue [100]:
x Review & edit configuration =%
0: Edit gpath :Queue device path [/dev/mqueue] :
1: Edit nodeid :Cluster node id [1]:
2: Edit qgprefix :System code (prefix/setfile name, etc) [app2]:
3: Edit timeout :System wide tpcall () timeout, seconds [90]:
4: Edit appHome :Application home [$TESTHOME] :
6: Edit binDir :Executables/binaries sub-folder of Apphome [bin]:
8: Edit confDir :Configuration sub-folder of Apphome [conf]:
9: Edit logDir :Log sub-folder of Apphome [log]:
10: Edit ubfDir :Unified Buffer Format (UBF) field defs sub-folder of Apphome [ubftab <«
13
11: Edit tempDir :Temp sub-dir (used for pid file) [tmp]:
12: Edit installQ :Configure persistent queue [y]:
13: Edit tmDir :Transaction Manager Logs sub-folder of Apphome [tmlogs]:
14: Edit gdata :Queue data sub-folder of Apphone [gdata]:
15: Edit gSpace :Persistent queue space namme [SAMPLESPACE]:
16: Edit gName :Sample persistent queue name [TESTQ1l]:
17: Edit gSvc :Target service for automatic queue for sample Q [TESTSVC1]:
18: Edit eventSv :Install event server [y]:
19: Edit cpmSv :Configure Client Process Monitor Server [y]:
20: Edit configSv :Install Configuration server [y]:
21: Edit bridge :Install bridge connection [y]:
22: Edit bridgeRole :Bridge —-> Role: Active(a) or passive(p)? [a]:
24: Edit ipc :Bridge -> IP: Connect to [172.0.0.1]:
25: Edit port :Bridge —-> IP: Port number [21003]:
26: Edit otherNodeId :0ther cluster node id [2]:
27: Edit ipckey :IPC Key used for System V semaphores [44000]:
28: Edit 1ldbal :Load balance over cluster [0]:
29: Edit ndrxlev :Logging: ATMI sub-system log level 5 - highest (debug), 0 - minimum <
(off) [2]:
30: Edit ubflev :Logging: UBF sub-system log level 5 - highest (debug), 0 - minimum (<«
off) [1]:
31: Edit tplev :Logging: /user sub-system log level 5 - highest (debug), 0 - minimum <
(off) [5]:
32: Edit usvl :Configure User server #1 [y]:
33: Edit usvl_name :User server #1: binary name [testsv]:
34: Edit usvl_min :User server #1: min [1]:
35: Edit usvl_max :User server #1: max [1]:
36: Edit usvl_srvid :User server #1: srvid [2000]:
37: Edit usvl_cctag :User server #1l: cctag []:
38: Edit usvl_sysopt :User server #1: sysopt [-e ${NDRX_APPHOME}/log/testsv.log]:
39: Edit usvl_appopt :User server #1: appopt []:
50: Edit ucll :Configure User client #1 [n]:
55: Edit addubf :Additional UBFTAB files (comma seperated), can be empty [test.fd]:
56: Edit msgsizemax :Max IPC message size [56000]:
57: Edit msgmax :Max IPC messages in queue [100]:
c: Cancel
w: Accept, write
Enter the choice [0-57, ¢, w]: w
ndrxconfig: [$TESTHOME/conf/ndrxconfig.xml]
appini: [$STESTHOME/conf/app.ini]
setfile: [$STESTHOME/conf/setapp2]

To start your system,
$ cd $TESTHOME/conf
$ source setapp?2

run following commands:

Enduro/X Internal/External Developer Guide

34 /49

$ xadmin start -y

Provision succeed!

$ 1s -1
total 68
Adrwxrwxr—x
ArwXrwxr—x
drwxXrwxr—x

userl userl 4096 feb 12 10:32 bin

userl userl 4096 feb 12 10:32 conf

userl userl 4096 feb 12 10:32 log

userl userl 4096 feb 11 16:27 pkg

userl userl 4096 feb 12 10:32 gdata

userl userl 4096 feb 11 17:05 src

userl userl 4096 feb 12 10:32 tmlogs

userl userl 4096 feb 12 10:32 tmp

userl userl 4096 feb 12 10:32 ubftab

userl userl 30755 feb 12 10:32 ULOG.20170212

Adrwxrwxr—-x
ArwXrwxr—x
AdrwxXrwxr—x
drwxrwxr—-x
ArwXrwxr—x
AdrwxXrwxr—x

R NN WOoDNDWwNDDNDDN

—YrW—rw—r——

Once the system is provisioned, we need to put the symbolic links to our binaries to Enduro/X runtime "bin" directory. Also we

will put our test field definition file test.fd into STESTHOME/ubftab folder.

$ cd STESTHOME/bin

S 1ln —-s STESTHOME/src/clt/testcl
$ In -s $TESTHOME/src/srv/testsv
$ cd STESTHOME/ubftab

$ 1n —-s STESTHOME/src/ubftab/test.fd

Now we are ready to boot up the runtime:

S cd STESTHOME/conf

$ source setapp2

$ xadmin start -y

Enduro/X 3.4.4, build Feb 11 2017 16:57:21, using epoll for LINUX (64

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2015, 2016 Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

EnduroX back-end (ndrxd) is not running

ndrxd PID (from PID file): 18849

ndrxd idle instance started.

exec cconfsrv -k OmyWI5Snu -i 1 —e S$STESTHOME/log/cconfsrv.log -r —-—

process 1d=18851 ... Started.
exec cconfsrv -k OmyWI5nu -1 2 -e $TESTHOME/log/cconfsrv.log -r —-—
process id=18852 ... Started.
exec tpevsrv -k OmyWI5nu -i 20 —-e $TESTHOME/log/tpevsrv.log -r —-—
process 1d=18853 ... Started.
exec tpevsrv -k OmyWI5nu -i 21 —-e S$STESTHOME/log/tpevsrv.log -r —-—
process 1d=18854 ... Started.
exec tmsrv -k OmyWI5nu -i 40 -e S$TESTHOME/log/tmsrv-rml.log -r —- -tl
il == g
process 1d=18855 ... Started.
exec tmsrv -k OmyWI5Snu -i 41 -e $TESTHOME/log/tmsrv-rml.log -r —- -tl
rml ——

process 1d=18867 ... Started.

bits)

-1$TESTHOME/tmlogs/

-1$TESTHOME/tmlogs/

Enduro/X Internal/External Developer Guide 35/49

exec tmsrv -k OmyWI5Snu -i 42 -e S$TESTHOME/log/tmsrv-rml.log -r —-—- —-tl -1$TESTHOME/tmlogs/ <>
rml —--
process 1d=18879 ... Started.
exec tmqueue -k OmyWIS5nu —-i 60 -e $TESTHOME/log/tmqueue-rml.log -r —-— -m SAMPLESPACE -sl -- ¢«
process 1id=18891 ... Started.
exec tpbridge -k OmyWI5nu -i 150 -e S$TESTHOME/log/tpbridge_2.log -r —— -f -n2 -r -i <+
172.0.0.1 -p 21003 —-tA -z30
process 1d=18923 ... Started.
exec testsv -k OmyWI5S5nu -i 2000 -e S$TESTHOME/log/testsv.log —-—
process 1d=18924 ... Started.
exec cpmsrv -k OmyWI5Snu —-i 9999 -e $TESTHOME/log/cpmsrv.log -r —- -k3 —-il —-
process 1d=18929 ... Started.

Startup finished. 11 processes started.

Now test availability of our test service:

$ xadmin psc
Enduro/X 3.4.4, build Feb 11 2017 16:57:21, using epoll for LINUX (64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2015, 2016 Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

ndrxd PID (from PID file): 6119

Nd Service Name Routine Name Prog Name SRVID #SUCC #FAIL MAX LAST STAT

1 (@CCONF CCONF cconfsrv 1 0 0 Oms Oms AVAIL
1 QCCONF CCONF cconfsrv 2 0 0 Oms Oms AVAIL
1 @TPEVSUBS TPEVSUBS tpevsrv 20 0 0 Oms Oms AVAIL
1 (@TPEVUNSUBS TPEVUNSUBS tpevsrv 20 0 0 Oms Oms AVAIL
1 (@TPEVPOST TPEVPOST tpevsrv 20 0 0 Oms Oms AVAIL
1 @TPEVDOPOST TPEVDOPOST tpevsrv 20 0 0 Oms Oms AVAIL
1 G@TPEVSUBS TPEVSUBS tpevsrv 21 0 0 Oms Oms AVAIL
1 (@TPEVUNSUBS TPEVUNSUBS tpevsrv 21 0 0 Oms Oms AVAIL
1 @TPEVPOST TPEVPOST tpevsrv 21 0 0 Oms Oms AVAIL
1 @TPEVDOPOST TPEVDOPOST tpevsrv 21 0 0 Oms Oms AVATIL
1 @TM-1 TPTMSRV tmsrv 40 0 0 Oms Oms AVAIL
1 @TM-1-1 TPTMSRV tmsrv 40 0 0 Oms Oms AVAIL
1 @TM-1-1-40 TPTMSRV tmsrv 40 0 0 Oms Oms AVAIL
1 @TM-1 TPTMSRV tmsrv 41 0 0 Oms Oms AVAIL
1 @TM-1-1 TPTMSRV tmsrv 41 0 0 Oms Oms AVAIL
1 @TM-1-1-41 TPTMSRV tmsrv 41 0 0 Oms Oms AVAIL
1 @TM-1 TPTMSRV tmsrv 42 0 0 Oms Oms AVAIL
1 @TM-1-1 TPTMSRV tmsrv 42 0 0 Oms Oms AVAIL
1 @TM-1-1-42 TPTMSRV tmsrv 42 0 0 Oms Oms AVAIL
1 @TMQ-1-60 TMQUEUE tmgueue 60 0 0 Oms Oms AVAIL
1 @QSPSAMPLES+ TMQUEUE tmqueue 60 0 0 Oms Oms AVAIL
1 @TPBRIDGE002 TPBRIDGE tpbridge 150 0 0 Oms Oms AVATL
1 TESTSV TESTSV testsv 2000 O 0 Oms Oms AVAIL
1 @CPMSVC CPMSVC cpmsrv 9999 0 0 Oms Oms AVAIL

TESTSYV is advertised, thus all is ok. No try will run the test client.

Run the client

We will run the client by simply invoking in shell testcl binary. The working progress will be logged on output.

Enduro/X Internal/External Developer Guide 36/49

testcl
:USER:4: 6845:7fd1d85b47c0:000:20170212:191211999:testcl.c:0044:Initializing...
:USER:4: 6845:7£fd1d85b47c0:000:20170212:191212000:testcl.c:0090:Processing...
_STRING_FLD Hello world!
T_STRING_2_FLD Hello World from XATMI server
t:USER:4: 6845:7£fd1d85b47c0:000:20170212:191212004:testcl.c:0129:Got response from server: <+
[Hello World from XATMI server]
t:USER:4: 6845:7fd1d85b47c0:000:20170212:191212004:testcl.c:0069:Uninitializing...

e s

Thus as we see from the sample run it did call the server and got back the response "Hello World from XATMI server". Thus we
can conclude that server and client was successfully generated and runtime provisioned.

Enduro/X Internal/External Developer Guide 37/49

Chapter 10

Using unsolicited messages

Enduro/X supports unsolicited messages. The idea is that server process (or other client processes which have a handler to client)
can send unsolicited messages to clients. The client processes consumes these messages and invokes the callback function. The
callback is invoked in case if callback handler is set by tpsetunsol(3) function.

The unsolicited messages are posted by XATMI services by using tpnotify(3). This function gets the Client ID (extracted from
service call parameter structure, field TPSVCINFO.cltid:

void SOMESERVICE (TPSVCINFO xp_svc)
{

if (O!=tpnotify(&p_svc->cltid, (char *)p_ub, 0L, O0L))
{
NDRX_LOG (log_error, "Failed to tpnotify()!");

Unsolicited messages can be broadcast to client processes by servers and client by using tpbroadcast(3). The broadcast takes
Enduro/X cluster node id (Imid param) and client name (cltname param). The match of the client processes are made by either
field present (exact match), field not present (match all) or match by regular expression.

Function signatures are following:

int tpnotify (CLIENTID xclientid, char =*data, long len, long flags);
int tpbroadcast (char x1lmid, char xusrname, char *cltname, char xdata, long len, long flags) ¢

’

Unsolicited message callback processing

The callback function receives XATMI buffer which was provided to the tpnotify(3) or tpbroadcast(3). When callback processes
these messages, there is limited availability of the operations that can be performed within the callback. The limitation is due to
fact, that unsolicited messages are provided from internals of the XATMI runtime and for example doing tpcall(3) might cause
recursive invocation of the callback handler and can cause stack overflow. The following list of XATMI functions are available
during the callback processing:

1. tpalloc(3)
2. tpfree(3)
3. tpgetlev(3)

Enduro/X Internal/External Developer Guide 38/49

4. tprealloc(3)

5. tptypes(3)

If more advanced processing is required, the user might create a new thread, copy the XATMI buffer and pass it to the thread.
Copy of the buffer is required due to fact, that buffer is automatic made free when callback function returns.

Networked operations

When sending the message to the client to different Enduro/X cluster node, then the transport of the notification is performed
by tpbridge(8) bridge process, but remote dispatching is performed by special XATMI server named tpbrdcstsv(8). To overall
notifications are processed in this way:

Dom 1 Dom 2
notification notification
callback callback
-~ F Y
3. Invoke
- - Invoke
netification netification testcit3 testcitd
testcitl
testclt2 broadcast broadcast
A
A |
broadcast broadcadt - broadast
readcas
_ broadcast, tpbridge tpcalll) > tpbridge | tpbrdcstsy
1. tpealli) 2. tpnetifyl) <
tpnotify
testbroadcastcl, A
breadcast to all,
h 4 tpbroadcast() tpeall()
ATMISVCI, i
tpnotifyl) tpeall() tpnetifyl k.
" ATMISVCZ
tpnotif !
protiy Doing tpnetify() back
tpnotify testcits
tpbrdcstsw 2 Invoke
ATMISVCZ
Invoke
notification |, netification
callback l

the picture contains:

1. Local tpnotify() - orange color
2. Local and remote tpbroadcast() - gray color

3. Remote tpnotify() - green
Unsolicited message applications
Unsolicited messages can be used for XATMI service reporting back progress of some particular work the client. Thus the

tpcall(3) is not interrupted, but some feedback can be received and processed.

Sample usage can be seen in Enduro/X ATMI test cases 38 and 39.

Enduro/X Internal/External Developer Guide 39/49

Chapter 11

Adding Enduro/X bindings

Currently Enduro/X have tier 1 bindings for th Go language. This implementation can be used as reference for other language
implementations. The core for the binding development is following:

We classically start with "data structures and algorithms"! Thust firstly define a structures.

But before we start the development, we need to create a build system for target language. The package name is endurox-
<language name>, .e.g endurox-java. The build system shall build the corresponding library and test executables.

1. Add enumeration of Enduro/X constants

2. Define error object, either it is just struct or exception classes

3. Create ATMI Context struct/class

4. Define Generic ATMI Buffer Object, add inherited objects to STRING, UBF, JSON, RAW/CARRAY

5. Advertise service (this means from high level language call Ondrx_main(), which will make init callback). Needs to
advertise service and allow the ndrx_main() to start to poll for messages. Once the message arrives we need to callback a
language specific function.

The bindings will use all libs server & client (like a Go). Thus it depends on the application logic either the binary becomes
server or it will be just a client.

Enduro/X Internal/External Developer Guide 40/49

Chapter 12

Plugin interface

Enduro/X provides API for writing custom plugins (loaded by shared libraries). There are certain criteria to which plugins must
correspond. This chapter will provide the plugin API definition. Also it will list the functionality which can be defined by plugin.
Plugins shall be written in thread safe manner.

Plugin Initialization

Plugins are registered in NDRX_PLUGINS environment variable, as semicolon separated values. Plugins are loaded during the
process "boostarp” (basically at the time when Enduro/X debug logger is initialized, before the Common-Configuration is read.
Thus plugins cannot be registered in [@global] section. As they must be already loaded before the INI file parsing, as for
example custom cryptography provider might be used. Libraries must be available in current shared library search path (e.g.
LD_LIBRARY_PATH, DYLD_LIBRARY_PATH, etc..).

Sample configuration:

$ export NDRX_PLUGINS=customcrypto.so; somotherfunc.so

Enduro/X plugin interface requires two mandatory symbols to be exported from plugin library, which must correspond to the
following signature:

long ndrx_plugin_init (char *provider_name, int provider_name_bufsz);

Where provider_name is arbitrary string describing the plugin. provider_name_bufsz is buffer size for the plugin description.
Typically it is around ~60 bytes.

In case of error function shall return -1. In case of success init function shall return one or more NDRX_PLUGIN_FUNC_XXXX
OR’ed bits, denoting the functionality which is being exported.

Currently following flags are available:
1. NDRX_PLUGIN_FUNC_ENCKEY - plugin provides cryptography key function

During the Initialization, only early logging (mem buffered logs) are available, see NDRX_ILLOG_EARLY/UBF_LOG_EARLY/TP_LOG
If use of other log functions is made, then must probably program will deadlock.

NDRX_PLUGIN_FUNC_ENCKEY functions

If plugin exports this flag, then library loader will search for following symbol in the shared library:

int ndrx_plugin_crypto_getkey (char xkeybuf, int keybuf_bufsz);

Where keybuf is buffer where to install encryption key. The encryption key must be zero (0x00) terminated C string. keybuf_bufsz
denotes the max buffer size (with 0x00 byte). In case of success function shall return 0. In case of failure, function shall return
-1. For this function only EARLY logging is available (NDRX_LOG_EARLY/UBF_LOG_EARLY/TP_LOG_EARLY).

Enduro/X Internal/External Developer Guide

41/49

Chapter 13

Starting Enduro/X XATMI server from other thread

than main

For some scenarios it might be needed to create XATMI server to which main thread is busy with some other functionality. And
only auxiliary thread may perform XATMI servicing actions. All this can be simply done with help of "libatmisrvinteg" and
ndrx_main_integra() function. Thus following code fragment creates a simple server and provides command to build it under

GNU/Linux.

#include <string.h>
#include <stdio.h>
finclude <stdlib.h>
#include <memory.h>
#include <math.h>

#include <unistd.h>
#include <sys/types.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#include <atmi.h>
#include <ubf.h>
#include <ndebug.h>
#include <unistd.h>

int M_argc;
char **xM_argv;

[**

* Service does not return anything...
*/

void HELLOSVC (TPSVCINFO =*p_svc)

{
tpreturn (TPSUCCESS, 0L, NULL, 0L, OL);

[**
* XATMI init callback
x/

int tpsvrinit (int argc, char #*xargv)

Enduro/X Internal/External Developer Guide

42 /49

NDRX_LOG (log_debug, "tpsvrinit called");

if (EXSUCCEED!=tpadvertise ("HELLOSVC", HELLOSVC))
{

NDRX_LOG (log_error, "Failed to initialize HELLOSVC!");

return -1;

return 0;

[**
* Do de—-initialization
*/

void tpsvrdone (void)

{
NDRX_LOG (log_debug, "tpsvrdone called");

/[x %
* Run run_xatmi_server from thread
*/

void run_xatmi_server (void xptr)

{
if (0!=ndrx_main_integra (M_argc, M_argv,
/* set callbacks: =/
tpsvrinit, tpsvrdone,
0L))

NDRX_LOG (log_error, "Failed to run Enduro/X main:

tpstrerror (tperrno)) ;

exit (1);
}
}
/[x %
* Standard main entry...
*/

int main(int argc, charxx argv)

{

pthread_t threadl;
pthread_attr_t pthread_custom_attr;

M_argc = argc;
M_argv = argv;

pthread_attr_init (&pthread_custom_attr);

/+ Configure stack, using Enduro/X internal method...

* but you can configure it by your self.
*/
pthread_attr_setstacksize (&pthread_custom_attr,
ndrx_platf_stack_get_size());

pthread_create (&threadl, &pthread_custom_attr, (void =)

pthread_join(threadl, NULL);

]
5SSy

&run_xatmi_server,

Enduro/X Internal/External Developer Guide 43 /49

return 0;

To compile the code, you may just use C compiler:

S cc -o samplesv sample.c -latmisrvinteg —-latmi -lubf -lnstd -lpthread -1lrt -1dl -1m

To boot the server, you may add it to ndrxconfig.xml and boot it up:

<servers>

<server name="samplesv">

<srvid>1600</srvid>

<min>1</min>

<max>1</max>

<sysopt>-e /tmp/SAMPLE_1 -r</sysopt>
</server>

</servers>

Finally give it a test:

NDRX> start -y

exec samplesv -k OmyWI5Snu -i 1600 -e /tmp/SAMPLE_1 -r —-—

process 1id=9650 ... Started.
NDRX> psc
Nd Service Name Routine Name Prog Name SRVID #SUCC #FAIL MAX LAST STAT
1 HELLOSVC HELLOSVC samplesv 1600 O 0 Oms Oms AVAIL

NDRX>

NOTE: the process is started with standard command line with args like -k/-i/-e and --. If your existing software also uses CLI
arguments, then it must be modified so that it does not crash with unknown keys. Also Enduro/X XATMI server will not tolerate
any other third party keys. Those other keys user might add it "appopts" section, followed by "--". See ndrxconfig.xml(5) for
more details.

Enduro/X Process naming strategies

The process naming strategies are complex ones, due to fact that server processes can be booted for shell-scripts and Enduro/X
sees the upper level script name and not the actual binary which performs the XATMI work. The process name participates in
following functional areas:

1. For clients, is opening of client’s reply queue

2. For servers, it is used for admin queues and reply queues.

The ndrxd daemon performs sanity checks, and it is doing cross-validation, that server queue with process name X and PID Y
exists in system. While for queue cross validation, all is ok, as X and Y exists, the problem is with cases when ndrxd performs
server PINGs. To build admin queue name to send ping to, ndrxd uses the binary name it knows (either server name or real
name extracted from command line). As command line can contain shell script, ndrxd will not be able to send PINGs to server
process, as queue will be different, and then ndrxd will kill the process as not pingable.

Enduro/X Internal/External Developer Guide 44 /49

Strategy 1

To cope with above cases, Enduro/X uses following solution:

1. If NDRX_SVPROCNAME is exported, then server process opens queue with this name.
2. In normal case NDRX_SVPROCNAME matches the server binary name, thus no changes for existing system logic.

3. In case of Java env, the argv/0] will be set to this environment variable or it will use just keyword "java" if variable is not
available.

To check that process exists, for servers this could be done in this way:

1. Check the PID existence (extracted from Q name)
2. Check the Process name existence (extracted from Q), does it match the PID (exec in the same approach of first test)

3. If does not exists, lookup the Process Model (PM). If the extracted name matches process name in PM, and the name from
CLI matches the real name, the process exists.

4. If above does not work out, lookup the environment variables of the process, check the existence of NDRX_SVPROCNAME
variable. If value matches the name extracted from queue, then process is alive.

5. Otherwise process is dead.

Strategy 2

The server process reports the final process name to the ndrxd while it reports it’s status and advertised services. At this point
ndrxd may start to send pings to server. Regarding of pinging non reported servers, this is up to ndrxd current algorithms of
when to ping.

Initially we take server name or exe name from command line as one to which admin messages shall be sent (prior receiving the
name from the process).

The Strategy 2 is simpler to implement. The Strategy 1 shows the server queues as virtual process names. That might be simpler
for admins to understand to whom the queue belongs to.

Booting processes as XATMI servers with out CLOPT

There could be server processes like Tomcat or JBoss App servers which we might want to boot as XATMI servers. For these
command line options cannot be passed in. Thus at ps -ef the output will not show Enduro/X specific flags like -k (unique app
key), -i (server instance id), -e (error log), etc.

One approach would be to pass these command line options in NDRX_SVCLOPT variable. But again we will have an issue with
some functional areas - like "xadmin down" command.

This could be solved by doing peek into other process environment. If we find the unique string there - then server process is
subject for killing.

Enduro/X Internal/External Developer Guide 45/ 49

Chapter 14

Process forking

There are special moments to take care of when Enduro/X process either XATMI client or XATMI server want’s to perform
forking (i.e. duplicate process).

Enduro/X offers following APIs to support better forking flow:

1. ndrx_fork(3) which is wrapper for fork() call which includes any resource deallocations/allocations necessary.

2. Another way if stock fork() needs to be used, then Enduro/X supports following APIs: ndrx_atfork_prepare() - parent
calls before fork, ndrx_atfork_parent() - parent calls after fork, ndrx_atfork_child() - child calls after fork.

There are three kind of issues that needs to be solved when forking.

1. In case of XATMI server process, when child process is forked, any server queues must be closed to avoid memory leaks.
This can be solved by either using ndrx_fork(3) or by calling ndrx_atfork_child().

2. If client process (or server process with threaded clients) is forked, then clients must be freed by tpterm(3) manually by
developer.

3. Incase if System V queues are used, auxiliary threads must be terminated, resources released and auxiliary threads must be
resumed for parent process. This can be solved either by using ndrx_fork(3), or ndrx_atfork_prepare()/ndrx_atfork_parent()/n

Functions ndrx_atfork_prepare()/ndrx_atfork_parent()/ndrx_atfork_child() can be registered with pthread_fork() so that
library fork calls are supported.

WARNING! When operating in System V mode and user is performing ndrx_fork(3), any other user threads shall not perform
XATMI IPCs (tpcalls, tprecv, etc..) in any other concurrent user thread, otherwise unexpected process corruption might happen.
Thus corresponding synchronization shall be done at user code.

Enduro/X Internal/External Developer Guide 46 /49

Chapter 15

Source code management

This section lists notes for Git usage for Enduro/X development. Usually we modify the sample configuration in directory
sampleconfig in order to get the test system working. But these changes should not be committed, as mostly they are local
means and local config. Thus to avoid the changed files from auto commit when using git commit -a, files can be marked as
"unchanged" by following git command:

$ git update-index —-assume—-unchanged sampleconfig/debug.conf
$ git update-index —-assume-unchanged sampleconfig/ndrxconfig.xml
$ git update-index —--assume—-unchanged sampleconfig/setndrx

Enduro/X Internal/External Developer Guide 47 /49

Chapter 16

Process debugging

This section lists some notes about techniques for debugging memory issues for the binaries.

Tracking down memory usage with Valgrind for XATMI servers

Valgrind utility can be used with XATMI servers to get some insight in memory usage and leaks. Here is the sample XATMI
server definition which uses Valgrind wrapper for server boot.

<server name="myserver">
<srvid>100</srvid>
<min>1</min>
<max>1</max>
<sysopt>-e /tmp/MYSERVER -r</sysopt>
<appopt>-cl0</appopt>
<cmdline>valgrind --tool=massif --pages—-as—-heap=yes ${NDRX_SVPROCNAME} ${NDRX_SVCLOPT <>
}</cmdline>
</server>

numbered!:

Enduro/X Internal/External Developer Guide 48 /49

Chapter 17

Additional documentation

Internet resources

[1] [ATMI-API] http://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgint6.htm
[2] [FML-API] http://docs.oracle.com/cd/E13203_01/tuxedo/tux91/fml/index.htm

http://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgint6.htm
http://docs.oracle.com/cd/E13203_01/tuxedo/tux91/fml/index.htm

Enduro/X Internal/External Developer Guide 49/49

Chapter 18

Glossary

This section lists

ATMI

Application Transaction Monitor Interface

UBF
Unified Buffer Format it is similar API as Tuxedo’s FML

	Enduro/X Development standard
	C Programming style
	Indentation
	Variable compare with constants
	Error handling
	Code with
	Function visibility
	Code documentation

	Reserved identifier prefixes
	Global variable naming policy
	Reserved UBF field numbers

	Unit testing
	Source code indexing with glimpse
	Glimpse installation
	Source indexing and searching

	Enduro/X libraries
	Common configuration
	Enduro/X common configuration setup
	User accessible configuration server
	Common configuration internals

	Common Debug logging API - TPLOG
	Logging facilities
	Hierarchy of the loggers (facilities)
	Debug string format
	Brief of logging functions
	Part of the standard library (ndebug.h)
	Part of the XATMI library (xatmi.h)

	Request logging concept
	Understanding the format of log file

	Queuing mechanisms
	Linux epoll and FreeBSD kqueue
	System V mode
	Poll mode

	Object-API
	Class model

	Generating source code with Enduro/X generators
	Implementing custom generators
	Building sample application generators
	Prepare project folder3
	Generate UBF table for both C & Go
	Generate C client code & make
	Generate Go server code & make
	Provision runtime and put binaries symlinks
	Run the client

	Using unsolicited messages
	Unsolicited message callback processing
	Networked operations
	Unsolicited message applications

	Adding Enduro/X bindings
	Plugin interface
	Plugin Initialization
	NDRX_PLUGIN_FUNC_ENCKEY functions

	Starting Enduro/X XATMI server from other thread than main
	Enduro/X Process naming strategies
	Strategy 1
	Strategy 2

	Booting processes as XATMI servers with out CLOPT

	Process forking
	Source code management
	Process debugging
	Tracking down memory usage with Valgrind for XATMI servers

	Additional documentation
	Internet resources

	Glossary

