Enduro/X Administration Manual

Enduro/X Administration Manual

Enduro/X Administration Manual

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

1.1

2018-11

Initial draft

MV

Enduro/X Administration Manual iii

Contents

1 How to configure Enduro/X 1
2 Setup System 2
2.1 Release fileformat L e e 3

22 LANUX SEIUP .« ¢ o v et e e e e e e e e e 3
2.2.1 Increase OS LIMIts o o i i e e e 3

2.2.2 Linux system setup for running in EPOLL/Posix queue mode 4

2.2.2.1 Mounting Posix qUEUES L e e e e e e 4

2.2.2.2 Setting Posix queue limits 4

2.2.3 Setting System V queue limitso 5

2.3 FreeBSD setup o o e e e e e 5
2.3.1 Configuring the system e e e e e e e 5

24 AIXSCLUP o o o e 6

2.5 SolariS SetUP L e e e e e 6

2.6 MacOS SEIUD . . v v o v e e e e e e e e 7

3 Setup environment configuration 8
4 Setting up Enduro/X demonstration environment 9
4.1 Creating default runtime and starting it up L. e e e e e e 9
4.1.1 Configuration file: "app.ini" for Common-Configuration (CC)mode 11

4.1.2 Configuration file: "ndrxconfig.xml" for demo process descriptions 12

5 Cluster configuration 16
5.1 Starting the demo application Server inStance L i . e e e e e e e 17

6 Max message size and internal buffer sizes 18
7 Enduro/X Smart Cache 20

7.1 Limitations of the cache e 21

Enduro/X Administration Manual iv
8 Enduro/X Monitoring with NetXMS 22
8.1 Buildingthe Agent e e e 22

8.2 Checking the available parameters from server e 23
8.2.1 Monitoring listof the items L. e 24

9 Additional documentation 28
0.1 INernet reSOUICES v v v v v o e e e e e e e e e e e e e e e e e e e 28

10 Glossary 29

Enduro/X Administration Manual

1/29

Chapter 1

How to configure Enduro/X

To configure Enduro/X you have to finish several steps.

1. Have a separate system user for each Enduro/X instance.

[\

. Setup System Environment (mount mq file system, configure mq params)
3. Setup environment configuration

4. Setup basic environment (demo)

|9

. Startup the application

Enduro/X Administration Manual 2/29

Chapter 2

Setup System

Enduro/X supports different back-end message transports. Following mechanisms are available:

* EPOLL (for FreeBSD it is Kqueue) over the Posix queues. This is fastest and most preferred transport mechanism when
available. True on queue multiple servers mechanism is supported for different services across different XATMI server binaries
(transport code "epoll" for GNU/Linux and "kqueue" for FreeBSD).

» System V message queues, this is generally second best transport available on Linux and Unix operating systems. One queue
multiple servers mechanism is available via Request Address option (rqaddr) for XATMI server. The limitation is that each
server running on same request address MUST provide all services provided by other servers in same Request Address. This
mechanism uses at-least one additional thread per XATMI participant for handling message send/receive time-outs. In case
if XATMI server, additional more thread is used for administrative message handling and dispatching to main server thread.
Thus compiler must support the multi-threaded operations for user applications (transport code "SystemV").

* The third option if POLL over the Posix queues. This uses round-robin approach for message delivery to load balanced servers.
One additional thread is used for server process to monitor queues (transport code "poll").

* The forth option is emulated message queue which uses shared memory and process shared Posix locks to emulate the mssage
queue (transport code "emq").

Table 2.1: Enduro/X IPC transport sub-systems

Operating epoll kqueue systemv poll emq
System/IPC
Transport
GNU/Linux R X R S S
FreeBSD X R S S S
IBM AIX X X R S S
Oracle X X R S S
Solaris
MacOS X X X X R

Legend:
S - supported.
R - supported and release provided.

X - not supported.

Enduro/X Administration Manual

Each of these IPC transports for particular operating system requires specific approach for configuring the limits and other

attributes for runtime.

Note that transport version is built into Enduro/X distribution. Thus to change the IPC transport, different Enduro/X version must
be installed (i.e. cannot be changed by parameters). As the ABI for user apps stays the same, the user application is not required

to be rebuilt.

2.1 Release file format

The release file for Enduro/X encodes different information. For example file names

1. endurox-5.4.1-1.ubuntul8_04_GNU_epoll.x86_64_64.deb

2. endurox-5.4.1-1.SUNOS5_10_GNU_SystemV.sparc_64

encodes following information:

Table 2.2: Enduro/X distribution file name naming conventions

Product | Version | Release | OS C (O] IPC CPU Target
name Name Com- Ver- Trans- | Arch
piler sion port
ID
endurox | 5.4.1 1 Ubuntu | 18.04 GNU EPOLL | x86_64 | 64 bit
GCC mode
endurox | 5.4.1 1 SUNOS | 5.10 GNU System | SPARC | 64 bit
- (10) GCC \" mode
Solaris queues

2.2 Linux setup

In this chapter will be described typical GNU/Linux system configuration required for Enduro/X. Two sets of configurations are

available for Linux OS. One is for Posix queues with epoll and another configuration is System V configuration.

Kernel parameter configuration is needed for Enduro/X runtime. But as we plan here to build the system and run unit-tests, then
we need a configuration for runtime.

2.2.1 Increase OS limits

$ sudo -s

cat << EOF >> /etc/security/limits.conf

Do not limit message Q Count.

Some Linux 3.x series kernels have a bug,

queues for one system user.

In 2.6.x and 4.x this is fixed, to have

unlimited count of queues (memory limit).

ealrier and later Linuxes have fixed this issue.
* soft msgqueue =i

* hard msgqueue =1l

that limits 1024

Enduro/X Administration Manual 4/29

Increase the number of open files

* soft nofile 1024
* hard nofile 65536
EOF

exit

$

2.2.2 Linux system setup for running in EPOLL/Posix queue mode

This step request mounting of Posix queues and change Posix queue limits

2.2.2.1 Mounting Posix queues
This step does not apply to following Operating Systems - for these continue with next chapter:

1. Ubuntu 16.04 and above

2. Debian 8.x and above

When running in e-poll mode Enduro/X needs access to virtual file system which provides Posix queue management. One way
would be to mount it via "/etc/fstab", but for older system compatibility, we provide instructions that would work for all OSes.
To do this automatically at system startup, Linuxes which supports /etc/rc.local, must add following lines before "exit 0".

#!/bin/bash

Mount the /dev/mqueue
Not for Debian 8.x: queue i1s already mounted, thus test:

if [! -d /dev/mqueue]; then
mkdir /dev/mgueue
mount -t mqueue none /dev/mgueue
fi
exit 0
Note for Centos/RHEL/Oracle Linux 7+ you need to give execute permissions for rc.local:

chmod +x /etc/rc.local

Load the configuration by doing:

/etc/rc.local

2.2.2.2 Setting Posix queue limits

Next step is to configure queue limits, this is done by changing Linux kernel parameters, in persistent way, so that new settings
are applied at the OS boot.

$ sudo -s
cat << EOF >> /etc/sysctl.conf

Max Messages in Queue
fs.mgueue.msg_max=10000

Max message size, to pass unit tests, use 1M+1K

Enduro/X Administration Manual 5/29

fs.mqueue.msgsize_max=1049600

Max number of queues for user
fs.mgueue.queues_max=10000

EOF

Apply kernel parameters now
$ sudo sysctl -f /etc/sysctl.conf

to check the values, use (print all) and use grep to find:
$ sudo sysctl -a | grep msgsize_max

2.2.3 Setting System V queue limits

To pass the Enduro/X unit tests, certain queue configuration is required. Use following kernel settings:
$ sudo -s

cat << EOF >> /etc/sysctl.conf

max queues system wide, 40K should be fine
kernel .msgmni=40000

max size of message (bytes), ~1IM should be fine
kernel .msgmax=1049600

default max size of queue (bytes), ~10M should be fine
kernel .msgmnb=104960000

EOF

persist the values
$ sudo sysctl -f /etc/sysctl.conf

Check status...
$ sudo sysctl -a | grep msgmnb

2.3 FreeBSD setup

For FreeBSD only officially supported version if Posix queues, thus this operating system requires some settings for these [PC
resources to pass the unit testing and also settings are generally fine for average application.

2.3.1 Configuring the system

Queue file system must be mounted when OS starts. Firstly we need a folder /mnt/mqueue where the queues are mount. And
secondly we will add the automatic mount at system startup in /etc/fstab.

mkdir /mnt/mqueue

cat << EOF >> /etc/fstab

null /mnt /mqueue mqueuefs rw 0 0
EOF

mount /mnt/mqueue

You also need to change the queue parameters:

Enduro/X Administration Manual

cat << EOF >> /etc/sysctl.conf

kernel tunables for Enduro/X:
mgueue .
.maxmg=30000
.maxmsgsize=64000
.maxmsg=1000

kern.
kern.
kern.
kern.

EOF

mgueue
mgueue
mgueue

sysctl —-f

curmg=1

/etc/sysctl.conf

For LMDB testing more semaphores shall be allowed

cat <<

kernel

kern.ipc.

EOF >> /boot/loader.conf

tunables for Enduro/X:
semmns=2048

kern.ipc.semmni=500

EOF

After changing /boot/loader.conf, reboot of system is required.

Enduro/X testing framework uses /bin/bash in scripting, thus we must get it working. Also perl is assumed to to be /usr/bin/perl.
Thus:

1In -s /usr/local/bin/bash /bin/bash
In -s /usr/local/bin/perl /usr/bin/perl

reboot to apply new settings (limits & mqueue mount)

24 AIX setup

On the other hand AIX do not require any fine tuning for System V queues, because it is doing automatic adjustments to queue
limitations. However to pass the Enduro/X standard unit tests, the security limits must be configured. Unit tests uses standard user
"userl" for this purposes. Thus here stack, data mem size, file size and rss sizes are set to unlimited. For example if stack/data/rss
is not set correctly, some multi-threaded components of Enduro/X might hang during the startup, for example tpbridge(8).

cat << EOF >> /etc/security/limits

userl:
stack = 655360
data = -1
rss = -1
fsize = -1
EOF

2.5 Solaris setup

To pass the Enduro/X unit tests on Solaris, System V queue settings must be applied.

cat << EOF >> /etc/system
set msgsys:msginfo_msgmni
set msgsys:msginfo_msgmnb

10000
10496000

EOF

Enduro/X Administration Manual 7129

So here msgmni is maximum number of queues that can be created and msgmnb is single queue maximum size which here is
10MB.

After changing the settings, reboot the server.

2.6

MacOS setup

OSX does not use require any kernel parameter changes, as emulated message queue is used here. Only it required that sufficient
disk space is available to /tmp directory, as the memory mapped queue files will be stored there.

As Enduro/X uses System V shared memory segments, the default sizes are not sufficient for the at least Enduro/X unit testing.
Thus limits needs to be changed:

$ sudo -s
cat << EOF >> /boot/loader.conf

kern.
kern.
kern.
kern.
kern.
kern.
.maxfilesperproc=262144

kern

EOF

sysv.shmmax=419430400
sysv.shmmin=1
sysv.shmmni=32
sysv.shmseg=8
sysv.shmall=102400
maxfiles=524288

After this reboot is required.

Enduro/X Administration Manual 8/29

Chapter 3

Setup environment configuration

Enduro/X depends lot of Environment variables. See manpage of ex_env ([EX_ENV]) to see all parameters that must be setup.
There is also sample configuration provided. Normally it is expected that separate shell script file is setup containing all param-
eters. Then to load the environment, login with Enduro/X user in, and run following command in your app dir, for example:

$ cd /endurox/app/conf
S . setapp

Enduro/X Administration Manual 9/29

Chapter 4

Setting up Enduro/X demonstration environment

This section describes how to create a basic Enduro/X environment. Document will also explain the resources used by Enduro/X
from the system setup and administrative perspective. Section will also explain the contents for each of the generated file, so that
runtime can be manually reconstructed, which is usable for AIX operating system, as there "xadmin provision" command is not
available.

4.1 Creating default runtime and starting it up

To create generic runtime with Enduro/X "stock" servers processes, use following command:

$ xadmin provision -d

To control debug output, set debugconfig file path in $NDRX_DEBUG_CONF

N:NDRX:4:00000000: 0:7£c81a75c900:000:20181110:113655631:plugins_load:inbase.c:0180:No <>
plugins defined by NDRX_PLUGINS env variable

N:NDRX:5:00000000: 0:7£fc81a75¢c900:000:20181110:113655631:cconfig_load:config.c:0429:CC <+
tag set to: []

N:NDRX:5:00000000: 0:7£c81a75c900:000:20181110:113655631:x_inicfg_new:inicfg.c:0114: «
_ndrx_inicfg_new: load_global_env: 1

N:NDRX:5:00000000: 0:7£c81a75c900:000:20181110:113655631:1ig_load_pass:config.c:0396:

_ndrx_cconfig_load_pass: ret: 0 is_internal: 1 G_tried_to_load: 1

N:NDRX:5:d5d3db3a: 8685:7fc81a75c900:000:20181110:113655632:x_inicfg new:inicfg.c:0114: <«
_ndrx_inicfg_new: load_global_env: 0

Enduro/X 5.4.1, build Nov 7 2018 08:48:27, using SystemV for LINUX (64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2009-2016 ATR Baltic Ltd.
Copyright (C) 2017,2018 Mavimax Ltd. All Rights Reserved.

This software is released under one of the following licenses:
AGPLv3 or Mavimax license for commercial use.

Logging to ./ULOG.20181110

/ /. / /_ _/_/ 1/
A A A VA A A A A S Y SV /
VRS S A A S S A S S A A S A S A S A \
/) /N, N,/ N\ /_/ /_/1_|
Provision

Compiled system type....: LINUX

Enduro/X Administration Manual 10/29

*%x Review & edit configuration =%

0: Edit gpath :Queue device path [/dev/mqueue] :
1: Edit nodeid :Cluster node 1id [2]:
2: Edit gprefix :System code (prefix/setfile name, etc) [testl]:
3: Edit timeout :System wide tpcall () timeout, seconds [90]:
4: Edit appHome :Application home [/tmp/demo] :
6: Edit binDir :Executables/binaries sub-folder of Apphome [bin]:
8: Edit confDir :Configuration sub-folder of Apphome [conf]:
9: Edit logDir :Log sub-folder of Apphome [log]:
10: Edit ubfDir :Unified Buffer Format (UBF) field defs sub-folder of Apphome [ubftab <«
13
11: Edit tempDir :Temp sub-dir (used for pid file) [tmp]:
12: Edit installQ :Configure persistent queue [y]:
13: Edit tmDir :Transaction Manager Logs sub-folder of Apphome [tmlogs]:
14: Edit gdata :Queue data sub-folder of Apphone [gdata]:
15: Edit gSpace :Persistent queue space namme [SAMPLESPACE]:
16: Edit gName :Sample persistent queue name [TESTQ1]:
17: Edit gSvc :Target service for automatic queue for sample Q [TESTSVC1]:
18: Edit eventSv :Install event server [y]:
19: Edit cpmSv :Configure Client Process Monitor Server [y]:
20: Edit configSv :Install Configuration server [y]:
21: Edit bridge :Install bridge connection [y]:
22: Edit bridgeRole :Bridge —-> Role: Active(a) or passive(p)? [a]:
24: Edit ipc :Bridge -> IP: Connect to [172.0.0.1]:
25: Edit port :Bridge —-> IP: Port number [21003]:
26: Edit otherNodeId :0ther cluster node id [2]:
27: Edit ipckey :IPC Key used for System V semaphores [44000]:
28: Edit 1ldbal :Load balance over cluster [0]:
29: Edit ndrxlev :Logging: ATMI sub-system log level 5 - highest (debug), 0 - minimum <
(off) [5]:
30: Edit ubflev :Logging: UBF sub-system log level 5 - highest (debug), 0 - minimum (<«
off) [1]:
31: Edit tplev :Logging: /user sub-system log level 5 - highest (debug), 0 - minimum <
(off) [51]:
32: Edit usvl :Configure User server #1 [n]:
50: Edit ucll :Configure User client #1 [n]:
55: Edit addubf :Additional UBFTAB files (comma seperated), can be empty []:
56: Edit msgsizemax :Max IPC message size [56000]:
57: Edit msgmax :Max IPC messages in queue [100]:
ndrxconfig: [/tmp/demo/conf/ndrxconfig.xml]

appini: [/tmp/demo/conf/app.ini]
setfile: [/tmp/demo/conf/settestl]

To start your system, run following commands:
$ cd /tmp/demo/conf

$ source settestl

$ xadmin start -y

Provision succeed!

During the provision following directory structure was created at project root which is "/tmp/demo", where following data is
intended to be stored:

Table 4.1: Enduro/X distribution file name naming conventions

Directory File stored
ubftab UBF field tables

Enduro/X Administration Manual

11/29

Table 4.1: (continued)

Directory File stored

tmlogs/rm1 transaction manager
logs, sub-folder for
resource manager 1

conf configuration files

bin program binaries
(executables)

qdata persistent queue data

tmp temporary files like
pid file, etc.

log Enduro/X and user
log files

If demo needs to be started on AIX os, then these folders needs to be created by hand.

Most interesting thing at the given step is configuration files. The provision generates following list of files in "conf" folder:

Table 4.2: Enduro/X typical application configuration files

Directory File stored

app.ini Application
configuration

ndrxconfig.xml Application server
process
configuration

settest]

Bash script for
setting the Enduro/X
environment

Next chapters describe contents for each of the configuration files

4.1.1 Configuration file: "app.ini" for Common-Configuration (CC) mode

This file contains global settings (which alternatively can be set as environment variables, see ex_env(5)) in section [@global].
app.ini also contains debug configuration in section [@debug] (which alternatively can be configured in separated file, see
ndrxdebug.conf(5)). The ini file is also used by other Enduro/X services like persistent queues, defined in [@queue]. The
ini files allows sections to inherit settings from parents sections. The sub-sections can be configuration at process level with
NDRX_CCTAG env variable, or this can be done in ndrxconfig.xml at <cctag /> XML tag for XATMI servers and cctag

attribute for CPMSRYV clients.

The demo app.ini section looks like:

[@Qglobal]

NDRX_CLUSTERISED=1

NDRX_CMDWAIT=1

NDRX_CONFIG=${NDRX_APPHOME}/conf/ndrxconfig.xml

NDRX_DMNLOG=$ {NDRX_APPHOME } /1log/ndrxd.log
NDRX_DPID=$ {NDRX_APPHOME} /tmp/ndrxd.pid

NDRX_DQMAX=100
NDRX_IPCKEY=44000

Enduro/X Administration Manual

12/29

NDRX_LDBAL=0

NDRX_LEV=5

NDRX_LOG=$ {NDRX_APPHOME}/log/xadmin.log
NDRX_MSGMAX=100
NDRX_MSGSIZEMAX=56000
NDRX_NODEID=2
NDRX_QPATH=/dev/mqueue
NDRX_QPREFIX=/testl
NDRX_RNDK=0myWI5nu
NDRX_SRVMAX=10000
NDRX_SVCMAX=20000

NDRX_TOUT=90
NDRX_UBFMAXFLDS=16000
NDRX_ULOG=$ {NDRX_APPHOME} /log
FIELDTBLS=Exfields

FLDTBLDIR=S$ {NDRX_APPHOME} /ubftab

; Environment for Transactional Queue
[@global/RM1TMQ]

NDRX_XA_RES_ID=1

NDRX_XA_OPEN_STR=$ {NDRX_APPHOME} /gdata
NDRX_XA_CLOSE_STR=${NDRX_APPHOME}/gdata
NDRX_XA_DRIVERLIB=libndrxxagdisks.so

; dylib needed for osx
NDRX_XA_RMLIB=libndrxxagdisk.so
NDRX_XA_LAZY INIT=0

[@debug]

; * — goes for all binaries not listed bellow

*= ndrx=5 ubf=1 tp=5 file=

xadmin= ndrx=5 ubf=1 tp=5 file=${NDRX_APPHOME}/log/xadmin.log
ndrxd= ndrx=5 ubf=1 tp=5 file=${NDRX_APPHOME}/log/ndrxd.log

; Queue definitions goes here, see man g.conf (5) for syntax
[@queue]

; Default manual queue (reserved name ’'@’), unknown queues are created based on this

template:

<o

@=svcnm=—, autog=n,waitinit=0,waitretry=0,waitretryinc=0,waitretrymax=0,memonly=n,mode=fifo

[@queue/RM1TMQ]

; Sample queue (this one is automatic, sends messages to target service)

TESTQl=svcnm=TESTSVC1l, autog=y,tries=3,waitinit=1,waitretry=1,waitretryinc=2,waitretrymax=5, <

memonly=n, mode=fifo

The above also describes the configuration for Resource Manager 1 - which is used by persistent message queue. The Resource
manager settings applies at global level and one process may only work with one RM, thus processes operating with particular

Resource Manager, shall use CCTAG "RM1TMQ".

4.1.2 Configuration file: "ndrxconfig.xml" for demo process descriptions

The demo system does not include any user processes, but almost all Enduro/X distributed special services are configuration. The
configuration of system processes looks almost the same as for user processes, thus this gives some insight on how to configure

the system.

<?xml version="1.0" ?>
<endurox>
K==

%% For more info see ndrxconfig.xml (5) man page.

——>
<appconfig>

Enduro/X Administration Manual 13/29

gl==
ALL BELLOW ONES USES <sanity> periodical timer
Sanity check time, sec

—-—>

<sanity>1</sanity>

Ll==

Seconds in which we should send service refresh to other node.
——>
<brrefresh>5</brrefresh>

<l--
Do process reset after 1 sec

==>

<restart_min>1</restart_min>

Lll==

If restart fails, then boot after +5 sec of previous wait time
——>
<restart_step>1</restart_step>

Ll==

If still not started, then max boot time is a 30 sec.
——>
<restart_max>5</restart_max>

<l——
<sanity> timer, usage end
——>

L[==

Time (seconds) after attach when program will start do sanity & respawn <=
checks,

starts counting after configuration load

—-—>

<restart_to_check>20</restart_to_check>

<l—=
Setting for pg command, should ndrxd collect service
queue stats automatically If set to Y or vy,
then queue stats are on. Default is off.

——>

<gather_pqg stats>Y</gather_pqg stats>

</appconfig>
<defaults>

<min>1</min>
<max>2</max>
<l--
Kill the process which have not started in <start_max> time
——>
<autokill>1</autokill>

gl==
The maximum time while process can hang in ’starting’ state i.e.
have not completed initialization, sec X <= 0 = disabled

——>

<start_max>10</start_max>

€=

Enduro/X Administration Manual 14/29

Ping server in every X seconds (step is <sanity>).
——>
<pingtime>100</pingtime>

Ll==
Max time in seconds in which server must respond.
The granularity is sanity time.
X <= 0 = disabled

——>

<ping_max>800</ping_max>

<l—
Max time to wait until process should exit on shutdown
X <= 0 = disabled

——>

<end_max>10</end_max>

<!l—=
Interval, in seconds, by which signal sequence -2, -15, -9, -9.... <
will be sent
to process until it have been terminated.
——>
<killtime>1</killtime>

</defaults>
<servers>
<server name="cconfsrv">
<min>2</min>
<max>2</max>

<srvid>1</srvid>
<sysopt>-e ${NDRX_APPHOME}/log/cconfsrv.log -r</sysopt>
</server>
<server name="tpevsrv">
<min>2</min>
<max>2</max>
<srvid>20</srvid>
<sysopt>-e ${NDRX_APPHOME}/log/tpevsrv.log -r</sysopt>
</server>
<server name="tmsrv">
<min>3</min>
<max>3</max>
<srvid>40</srvid>
<cctag>RM1TMQ</cctag>
<sysopt>-e S${NDRX_APPHOME}/log/tmsrv-rml.log -r —— —-tl -1${ <«
NDRX_APPHOME } /tmlogs/rml</sysopt>
</server>
<server name="tmqueue">
<min>1</min>
<max>1</max>
<srvid>60</srvid>
<cctag>RM1TMQ</cctag>
<sysopt>-e ${NDRX_APPHOME}/log/tmqueue-rml.log -r -- -m SAMPLESPACE <>
-sl</sysopt>
</server>
<server name="tpbridge">
<min>1</min>
<max>1</max>
<srvid>150</srvid>
<sysopt>—-e ${NDRX_APPHOME}/log/tpbridge_2.log -r</sysopt>
<appopt>-f -n2 -r -i 172.0.0.1 -p 21003 -tA -z30</appopt>
</server>
<server name="cpmsrv">

Enduro/X Administration Manual 15/29

<min>1</min>
<max>1</max>
<srvid>9999</srvid>
<sysopt>-e ${NDRX_APPHOME}/log/cpmsrv.log —-r —— -k3 -il</sysopt>
</server>
</servers>
Ll==
Client section
——>
<clients>
Ll==
Test parameter passing to process
- To list clients:$ xadmin pc
- To stop client: $ xadmin sc -t TAGl -s SUBSECTION1
- To boot client: $ xadmin bc -t TAGl -s SUBSECTION1
——>
<client cmdline="your_test_binary.sh -t ${NDRX_CLTTAG} -s ${NDRX_CLTSUBSECT <>
pr>
<exec tag="TAGl" subsect="SUBSECTION1" autostart="Y" log="${ ¢
NDRX_APPHOME}/log/testbin-1.1log"/>
<exec tag="TAG2" subsect="SUBSECTION2" autostart="Y" log="${ «
NDRX_APPHOME}/log/testbin-3.log"/>
</client>
<client cmdline="your_test_binary2.sh -t ${NDRX_CLTTAG}">
<exec tag="TAG3" autostart="Y" log="${NDRX_APPHOME}/log/testbin2-1. ¢
log"/>
</client>
</clients>
</endurox>

The above configuration includes the maximum settings which are by default on from the provision script. This includes config-
uration servers (cconfsrv(8)) - which allows to download the configuration from ini files by standard tpcall(3) command. Then
it also includes event server, persistent queue and transaction manager for persistent queue. Bridge connection, configured as
active (client) side is added and client process monitor (cpmsrv(8)) is started with server id 9999. Thus once cpmsry is booted,
it will start the processes from "<clients/>" tag.

Enduro/X Administration Manual 16/29

Chapter 5

Cluster configuration

To setup cluster see you have to setup bridge ATMI processes on each of the machines. See [TPBRIDGE] documentation to have
understanding of clustering. Sample setup of cluster node which actively connects to Node 2 and waits call from Node 12 could
look like:

<?xml version="1.0" ?>
<endurox>
<appconfig>
<sanity>10</sanity>
<brrefresh>6</brrefresh>
<restart_min>1l</restart_min>
<restart_step>1</restart_step>
<restart_max>5</restart_max>
<restart_to_check>20</restart_to_check>
</appconfig>
<defaults>
<min>1</min>
<max>2</max>
<autokill>1</autokill>
<respawn>l<respawn>
<start_max>2</start_max>
<pingtime>1</pingtime>
<ping_max>4</ping_max>
<end_max>3</end_max>
<killtime>1</killtime>
</defaults>
<servers>
<!—-— Connect to cluster node 2, we will wait for call ——>
<server name="tpbridge">
<max>1</max>
<srvid>101</srvid>
<sysopt>-e /tmp/BRIDGE002 -r</sysopt>
<appopt>-n2 -r -i 0.0.0.0 -p 4433 -tP -z30</appopt>
</server>
<!-- Connect to cluster node 12, we try to connect activetly to it -->
<server name="tpbridge">
<max>1</max>
<srvid>102</srvid>
<sysopt>-e /tmp/BRIDGE012 -r</sysopt>
<appopt>-nl2 -r -i 195.122.24.13 -p 14433 -tA -z30</appopt>
</server>
</servers>
</endurox>

Enduro/X Administration Manual 171729

5.1 Starting the demo application server instance

The startup is straight forward. The environment variables needs to be loaded either by source command or by dot (.) notation.

$ cd /tmp/demo/conf

$ source settestl

$ xadmin start -y

Enduro/X 5.4.1, build Nov 7 2018 08:48:27, using SystemV for LINUX (64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2009-2016 ATR Baltic Ltd.
Copyright (C) 2017,2018 Mavimax Ltd. All Rights Reserved.

This software is released under one of the following licenses:
AGPLv3 or Mavimax license for commercial use.

Shared resources opened...

Enduro/X back-end (ndrxd) is not running
ndrxd PID (from PID file): 18037

* ndrxd idle instance started.

* % o

exec cconfsrv -k OmyWI5Snu -i 1 —-e /tmp/demo/log/cconfsrv.log -r —-—

process 1d=18041 ... Started.
exec cconfsrv -k OmyWI5nu -i 2 -e /tmp/demo/log/cconfsrv.log -r ——
process id=18045 ... Started.
exec tpevsrv -k OmyWI5nu -i 20 -e /tmp/demo/log/tpevsrv.log -r ——
process 1d=18049 ... Started.
exec tpevsrv -k OmyWI5Snu —-i 21 -e /tmp/demo/log/tpevsrv.log -r —-—
process 1d=18053 ... Started.
exec tmsrv -k OmyWI5Snu -i 40 -e /tmp/demo/log/tmsrv-rml.log -r —— —-tl -1/tmp/demo/tmlogs/ <
il == g
process 1d=18057 ... Started.
exec tmsrv -k OmyWI5Snu -i 41 -e /tmp/demo/log/tmsrv-rml.log -r —— —-tl -1/tmp/demo/tmlogs/ <
il == g
process 1d=18072 ... Started.
exec tmsrv -k OmyWI5Snu -i 42 -e /tmp/demo/log/tmsrv-rml.log -r —— —-tl -1/tmp/demo/tmlogs/ <
il == g
process 1d=18087 ... Started.
exec tmqueue -k OmyWIS5nu -i 60 -e /tmp/demo/log/tmqueue-rml.log -r —-— -m SAMPLESPACE -sl -- ¢«
process 1d=18102 ... Started.
exec tpbridge -k OmyWI5nu -i 150 -e /tmp/demo/log/tpbridge_2.log -r —— -f -n2 -r -1 <+
172.0.0.1 -p 21003 —-tA -2z30
process 1d=18137 ... Started.
exec cpmsrv -k OmyWI5S5nu -i 9999 -e /tmp/demo/log/cpmsrv.log -r -- -k3 -il ——
process 1d=18146 ... Started.

Startup finished. 10 processes started.

The application instance is started!

Enduro/X Administration Manual 18/29

Chapter 6

Max message size and internal buffer sizes

Starting from Enduro/X version 5.1+, the max message size what can be transported over the XATMI sub-system is limited to the
operating system’s queue settings. For example on Linux kernel 3.13 the message size limit (/proc/sys/fs/mqueue/msgsize_max)
is around 10 MB. The message size is configured with NDRX_MSGMAX environment variable, see ex_env(5) man page.

Also what should be noted, as Enduro/X mostly uses stack allocation instead of heap allocation (for safer and faster code), then
there are requirements against the stack size. The stack size (ulimit -s) must be at least size of message multiplied with 30. So
for example if message size is set to 1 MegaByte, then stack size shall be set to 30 Mega bytes (ulimit -s 30720 KB). If the stack
is not sufficient the following error will be print when attempting to run any Enduro/X based software:

Logging to ./ULOG.20171112
Failed to open [./ULOG.20171112]

9138:20171112:19144166:xadmin :LIMITS ERROR ! Please set stack (ulimit -s) size to: <
1966080 bytes or 1920 kb (calculated by: NDRX_MSGSIZEMAX (65536) *NDRX_STACK_MSG_FACTOR <
(30))

LIMITS ERROR ! Please set stack (ulimit -s) size to: 1966080 bytes or 1920 kb (calculated <
by: NDRX_MSGSIZEMAX (65536) *NDRX_STACK_MSG_FACTOR (30))
Process is terminating with error...

In this case stack size needs to be increased, that could be done by in multiple ways:

1. Change by $ ulimit -s 1920 To ensure that this is set each time the Enduro/X is started, it needs to be added to the "env"
script of the application which prepares application environment before app boot. Also system settings must be checked
in /etc/security/limits.conf either the limit is enough - "stack" parameter.

2. Set the user/system limit directly in /etc/security/limits.conf. For other operating systems, please consult with correspond-
ing manual for changing the message size and stack size.

Also regarding the buffer sizes, when NDRX_MSGMAX is set bellow 64K, the buffer size is fixed to 64K, this means that
operations like network packet size when using tpbridge, is set to 64K.

As the message size is in the same time a internal buffer size, this means that not all space can be used by sending some data (for
example CARRAY or UBF buffer). Some overhead is added by Enduro/X, message headers, for bridge protocol format extra
data is added for TLV structure. Thus to be safe, for example if expected data size is 64K, then message size should be set to
something like 8OKB.

For threads which are spawned by Enduro/X for bridge, transaction manager and other processes, the Pthreads stack size is
automatically adjusted. By default new thread does not use parent’s thread stack size, but instead some default value is used.
Which usually is quite small. Thus to get rid with this problem Enduro/X detects current process stack limit and tries to set this
in thread attributes. To get current stack size, the getrlimit (RLIMIT_STACK, ...) system call is used. How ever with IBM AIX
7.1 SP 2 TL 5, it is been seen that pthread_attr_setstacksize() fails for read stack size, with error EINVAL. Thus this give some
uncertainty what stack size to use. Thus to fix the problem, the code tries in loop the use the size attribute, each time with failure
new stack size is two times lower than previous. This is done until the correct value is found. If value is not found (i.e. target
size is O after divisions), the user message is logged:

Enduro/X Administration Manual 19/29

Error ! failed to set stack value!

Process continues after this, but it can be expected that random errors or core dumps may appear.

Enduro/X Administration Manual 20/ 29

Chapter 7

Enduro/X Smart Cache

Enduro/X support SOA level cache. This means that administrator can configure system configuration, so that certain services
are cached. Thus if some client process calls some service X, and it gets valid results back, then data key is built (specified in
config) and for this key data is saved to Lightning Memory-Mapped Database (LMDB). Next time service is called, the cache is
checked, again, key is built, and lookup to LMDB is made. If results are found in db, then actual service is X is not called, but
instead saved buffer from cache is returned back to caller. Cache works for tpcall() function.

Cache supports different features:

1. Limited or unlimited caches are available. The unlimited cache is bound to physical dimensions of db file (also specified
in configuration). In case of limited cache, number of logical items stored in cache can be specified. This is set by limit
parameter for database configuration. In case if limit is specified the strategy how to remove over-reached records can
be specified in database flags. The strategies supported are following: LRU - keep records recently used, FIFO - delete
records by chronological order (older records added to cache are being deleted), HITS - records mostly accessed stays in
cache.

2. Multiple physical storage definitions, so that XATMI services can be allocated in different or same physical storage. This
can help to solve challenges between storage space limitations and performance limitations (when multiple writes are done
in same physical storage).

3. Cache is Enduro/X cluster aware. Records can be distributed and deleted across the cluster nodes. Time based sync is
supported when in the same time both nodes adds records to non existing cache cell. On both cluster nodes will survive
record which is fresher. The older duplicate is zapped by tpcall() or by tpcached.

4. Records can be grouped for example statement pages can be all linked to single user. If transaction happens for user,
then whole group can be invalidated. Thus build cache again. Grouping can be also used for Denial Of Service (DoS)
protection. Enduro/X can be configured to limit the max number of new records in group, after which any new non existing
data element lookup in group will make request buffer to reject with configured tperrno, user return code and buffer.

5. Records in cache can be cross-invalidated. Meaning that "hooks" can be put on certain service calls in order to invalidate -
zap contents of some other cache.

6. Cache supports refresh conditions. So that in case if specific condition over the data is true, the cached data not returned,
but service invocation is performed and re-cached (old data overwritten).

Enduro/X Administration Manual 21/29

ClientfSermver Client/Server Client/Server

Process 1 Process 2 Process M

B E E f:

— — — [n]

= = = = = =

8 n in in o in
— []
[£
Da Service cache |ﬁ

v
v

sVC1 svVCz2 SVC3
(service) (service) (service)

| Time >

7.1 Limitations of the cache

The LMDB is build in such way that if write transaction on the database is open, then other writes will not be able to process
it in meantime. While read only transactions are processed, while some other process holds write transaction. Also if process
which is holding the lock is crashed (e.g. segfaul, kill, etc..), then lock is automatically made free. Thus for example is using hits
or Iru limitation caches, then this automatically means that during the tpcall() chaches needs to be updated, thus lock is needed,
and this means that all callers will have to sync in that place - thus makes point of bottleneck.

Enduro/X Administration Manual 22 /29

Chapter 8

Enduro/X Monitoring with NetXMS

NetXMS monitoring tool has the agent plugin for Enduro/X. This section will describe the basic elements how to monitor
Enduro/X with help of this tool

Enduro/X exposes following list of the tables which can monitor:

* Tuxedo.Clients - information about client processes.

* Tuxedo.Machines - information about cluster machines.

¢ Tuxedo.Queues - information about local queues.

* Tuxedo.ServerInstances - information about XATMI server processes.
* Tuxedo.ServiceGroups - dynamic information about XATMI services.
* Tuxedo.Services - static information about XATMI services.

To start the Enduro/X monitoring with the NetXMS, firstly the agent must be compiled with Enduro/X support. Thus the system
has to have compiler installed and access to Internet must be (for fetching the sources from the github).

8.1 Building the Agent

To build the agent, system must have C/C++ compiler installed and "git" tool too. Basically if Enduro/X build dependencies are
met on the host, then Netxms agent will build too. For more details consult with the project specific documentation.

But in general, to build the agent for Enduro/X, do the following steps:

git clone https://github.com/netxms/netxms

cd netxms

./reconf

./configure --with-agent —--prefix=/path/to/install --with-tuxedo=/usr --disable-mqgtt
make

sudo make install

Ur A - W

If doing basic setup, then usually you need to setup the configuration file for agent to allow the incoming servers connections,
for example:

cat << EOF > /etc/nxagentd.conf
LogFile=/var/log/nxagentd

IP white list, can contain multiple records separated by comma.
CIDR notation supported for subnets.

Enduro/X Administration Manual 23/29

MasterServers=127.0.0.0/8,172.17.0.1,192.168.43.98

EOF

Once configuration is done, the nxagentd shall be started from Enduro/X environment, so that agent will be able to call
tpadmsv(8) services. Usually agent is started from cpmsrv(8).

To start the agent manually, following commands may be used:

$ cd /path/to/install/bin

—— have some debug in current session:
S ./nxagentd -D5

—-— or to start as deamon:
$./nxagentd -D5

In case of CPMSRY, following can be used as configuration:

<!-- Client section ——>
<clients>

<client cmdline="/path/to/install/bin/nxagentd -D5" log="/tmp/nxagentd.log <
">
<exec tag="NXAGENT" autostart="Y" />
</client>

</clients>

8.2 Checking the available parameters from server

To check the list parameters that can be monitored, use following command:

$ nxget -1 <agent ip addr> Agent.SupportedParameters

Endurox.Client.ActiveConversations (*)
Endurox.Client.ActiveRequests (x)
Endurox.Client .Machine (*)
Endurox.Client .Name (*)
Endurox.Client.State ()
Endurox.Domain.ID
Endurox.Domain.Queues
Endurox.Domain.Servers
Endurox.Domain.Services
Endurox.Domain.State
Endurox.Machine.Accessers (*)
Endurox.Machine.Clients (*)
Endurox.Machine.Conversations (*)
Endurox.Machine.State (*)
Endurox.Queue.Machine (*)
Endurox.Queue.RequestsCurrent ()
Endurox.Queue.State ()
Endurox.ServerInstance.CommandLine (*)
Endurox.ServerInstance.Generation (*)
Endurox.ServerInstance.Machine (x)
Endurox.ServerInstance.Name (*)
Endurox.ServerInstance.PID (%)

Enduro/X Administration Manual 24 /29

Endurox.ServerInstance.State (*)
Endurox.Service.State (*)
Endurox.ServiceGroup.CompletedRequests (*)
Endurox.ServiceGroup.FailedRequests (*)
Endurox.ServiceGroup.LastExecutionTime ()
Endurox.ServiceGroup.MaxExecutionTime (x)
Endurox.ServiceGroup.MinExecutionTime (x)
Endurox.ServiceGroup.State (%)
Endurox.ServiceGroup.SuccessfulRequests (*)

To return the values from particular table, use following command:

$ nxget -T <agent ip> <table name e.g. Tuxedo.Clients>

8.2.1 Monitoring list of the items

In NetXMS it is possible import and monitor list of the resources. That can be done in the following way:

Firstly in Configure Data Collection Items (DCI) for new item. For example:

Enduro/X Administration Manual 25/29

Properties for [x]

| | €] | General

General "
Description

Custom Schedule

o v 8 v -

Enduro/¥ client {instance} state
Transformation

Data
Thresholds
Parameter
Instance Discovery Endurox.Client.State('{instance}') Select...
Performance Tab Origin Data Type
Access Control NetXMS Agent v | String v
Other options Interpret SNMP octet string raw value as Use customn SNMP port:
Comments None . i -
b
Sample count for average value calculation (0 to disable)
n o
- b
Source node Agent cache mode
<none= A || & Default W
Polling Status
Polling mode Polling interval (seconds) O Active
- . - C-2 .
Fixed intervals (default) v @ &0 o Disabled
Mot supported
Storage
Retention mode Retention time (days)
Use default retention time v || 30 :
Restore Defaults Apply
Cancel OK

NOTE: As Enduro/X uses comma in identifiers, then in templates quotes must be

Next configure agent list from which to discover the items:

Enduro/X Administration Manual

26/29

General

Custom Schedule
Transformation
Thresholds
Performance Tab
Access Control
Other options

Comments

Properties for

Instance Discovery

Instance discovery method
Agent List

List name
Tuxedo.Clients

Instance retention
Instance retention mode

Server default

Instance discovery filter script

@ Hints

da v o v w

Instance retention time (days)

Restore Defaults Apply

Cancel Ok

Once this is configured, instances shall be discovered. On monitored node in NetXMS Console, press left mouse button > Poll

> Instance discovery

After running the instance discovery, following output may be received:

[02.09.2019 20:57:57]
[02.09.2019 20:57:57]
[02.09.2019 20:57:57]
[02.09.2019 20:57:57]
[02.09.2019 20:57:57]
[02.09.2019 20:57:57]
[02.09.2019 20:57:57]

**x%*% Poll request sent to server *xxx
Poll request accepted
Starting instance discovery poll for node mypc
Running DCI instance discovery
Updating instances for FileSystem.UsedPerc({instance})
Updating instances for FileSystem.FreePerc({instance})
Updating instances for Endurox.Client.State(’ {instance}’)

[548]
[552]
[627]

[02.
[02.
[02.
[02.
[02.
[02.

09.
09.
09.
09.
09.
09.

2019
2019
2019
2019
2019
2019

20:
203
20:
20:
203
20:

57:
57:
57:
57:
57:
57:

57]
57]
57]
57]
57]
57]

Creating new DCO
Creating new DCO
Creating new DCO
Creating new DCO
Creating new DCO

for
for
for
for
for

instance
instance
instance
instance
instance

"/n00b, clt, reply, tmsrv,29321,2"
"/n00b, clt, reply, tmsrv,29304,2"
"1/NXAGENT/—/1"

"1/BINARY1/1"

"1/BINARY2/2"

**x%% Poll completed successfully *xxx

Enduro/X Administration Manual

27129

In the results in latest values new instances can be seen. In particular case status of clients are monitored:

=) Ovenriewla Alarms |5 Last Values Perfarrnance| B Imerfaces|

ID

W 637
B 536
M 635
W 634
M 633

w

Description

Enduro/¥ client 1/BINARY2/2 state

Enduro/X client 1/BINARY1/1 state

Enduro/X client 1/NXAGENT/-/1 state

Enduro/¥ client /n00b,clt reply,tmsrv,29304,2 state

Enduro/¥ client /n00b,clt reply,tmsrv,29321,2 state

Value
ACT
ACT
ACT
ACT
ACT

Timestamp

02.09.2019 20:57:57
02.09.2019 20:57:57
02.09.2019 20:57:57
02.09.2019 20:57:57
02.09.2019 20:57:57

Threshold
@ ok
© ok
© ok
@ oK
@ ok

Enduro/X Administration Manual 28 /29

Chapter 9

Additional documentation

9.1 Internet resources

[1] [EX_OVERVIEW] ex_overview(guides)
[2] [MQ_OVERVIEW] man 7 mq_overview
[3] [EX_ENV] ex_env(5)

[4] [NDRXCONFIG] ndrxconfig.xml(5)

[5] [DEBUGCONF] ndrxdebug.conf(5)

[6] [XADMIN] xadmin(8)

[7]1 [TPBRIDGE] tpbridge(8)

Enduro/X Administration Manual 29/29

Chapter 10

Glossary

This section lists

ATMI

Application Transaction Monitor Interface

UBF
Unified Buffer Format it is similar API as Tuxedo’s FML

	How to configure Enduro/X
	Setup System
	Release file format
	Linux setup
	Increase OS limits
	Linux system setup for running in EPOLL/Posix queue mode
	Mounting Posix queues
	Setting Posix queue limits

	Setting System V queue limits

	FreeBSD setup
	Configuring the system

	AIX setup
	Solaris setup
	MacOS setup

	Setup environment configuration
	Setting up Enduro/X demonstration environment
	Creating default runtime and starting it up
	Configuration file: "app.ini" for Common-Configuration (CC) mode
	Configuration file: "ndrxconfig.xml" for demo process descriptions

	Cluster configuration
	Starting the demo application server instance

	Max message size and internal buffer sizes
	Enduro/X Smart Cache
	Limitations of the cache

	Enduro/X Monitoring with NetXMS
	Building the Agent
	Checking the available parameters from server
	Monitoring list of the items

	Additional documentation
	Internet resources

	Glossary

