Getting Started Tutorial

Getting Started Tutorial

Getting Started Tutorial

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

1.1

2018-11

Updates for release 6.0 - move to provision script

MV

Getting Started Tutorial

Contents

1 About the guide

2 Operating System configuration

3 Installing binary package (RPM for Centos 6.x)
4 Configuring the application environment

5 Creating the server process
5.1 Defining the UBFfields e
5.2 Serversource code e e e e e e e
5.3 Booting the Server ProCess v v v i it e e e e e e e e e e e

5.4 Testing the service with "ud" command

6 Creating the client application
6.1 Clientbinary source code L e e e e e e e

6.2 Running the client process L e e e e
7 Deploy ""banksv' in Docker container
8 Conclusions

9 Additional documentation

0.1 INErNELTESOUICES v v o v v o e e e e e e e e e e e e e e e e e

10 Glossary

12
12
13

15

16

17
17

18

Getting Started Tutorial 1/18

Chapter 1

About the guide

Getting started tutorial covers Enduro/X installation from binary package, environment setup, creating a sample Enduro/X server
and creating sample client. This include creating a necessary configuration files. Finally the application is booted, and client
process calls the sample server process.

Getting Started Tutorial 2/18

Chapter 2

Operating System configuration

Certain operating system configuration is required in order to Enduro/X running, see ex_adminman(guides)(Enduro/X Adminis-
tration Manual, Setup System) section, the steps are crucial to be executed for chosen operating system before continuing.

Getting Started Tutorial 3/18

Chapter 3

Installing binary package (RPM for Centos 6.x)

We will also need a gcc compiler to build our bankapp

wget https://www.endurox.org/attachments/download/243/endurox-5.3.6-1.centos6_9_GNU. ¢
x86_64.rpm

rpm -1 endurox-5.3.6-1.centos6_9_GNU.x86_64.rpm

yum install gcc

Getting Started Tutorial

4/18

Chapter 4

Configuring the application environment

We will run our app "appl" from new user "userl". Application domain will be located in /opt/app! folder.

To create creating base environment, Enduro/X "provision" tool is used. This generates base layout of application. Additional

folder will be created later.

useradd -m userl
mkdir -p /opt/appl
chown userl /opt/appl
su — userl
cd /opt/appl
xadmin provision -d \
-v gprefix=appl \
-v installQ=n \
-v eventSv=n \
-v cpmSv=n \
-v configSv=n \
-v bridge=n \
-v addubf=bank. fd

W W FH= H= FHE=

Provision succeed!

Above script uses defaults, and for some parameters values are specified:

Table 4.1: Parameters applied to provision script above

Parameter

Value
applied

Description

gprefix

appl

Application
prefix

installQ

n

Do not
configure
persistent
queue as not
used in
example

eventSv

Do not
configure
event server
as not used
in example

Getting Started Tutorial

5/18

Table 4.1: (continued)

Parameter Value
applied

Description

cpmSv n

Do not
configure
client
process
monitor
server as not
used in
example

configSv n

Do not
configure
Common
Configura-
tion
interface
server as not
used here

bridge n

Do not
install
network
bridge as not
used in
example

addubf bank.fd

Additional
Key-value
field
table/UBF
field to be
configured,
used by
sample later

After provision completed, add directories for source code

$ mkdir /opt/appl/test
$ mkdir -p /opt/appl/src/bankcl
$ mkdir -p /opt/appl/src/banksv

Thus the final directory structure built for the application is

* /opt/appl/conf - will contain configuration files.

* /opt/appl/src/bankcl - Enduro/X sample client process source

* /opt/appl/src/banksv - Enduro/X sample server process sources.

* /opt/appl/bin - for executables.

* /opt/app1/ubftab - for tables for field definitions.
* /opt/appl/tmp - temp dir

* /opt/appl/log - for logging

* /opt/appl/test - test data

Getting Started Tutorial 6/18

For demo purposes the provision script have made more or less empty XATMI server configuration file found in /opt/app1/conf/ndrxcon
Lets register firstly our XATMI server named banksv here first. Do this in <servers/> section add following <server /> block in
the file:

<?xml version="1.0" ?>

<endurox>
</defaults>
<servers>
<server name="banksv">
<srvid>1l</srvid>
<min>2</min>
<max>2</max>
<sysopt>-e /opt/appl/log/BANKSV -r</sysopt>
</server>
</servers>
</endurox>

Also we are about to add some logging settings for our binaries we are about to build, thus add following lines int the [@debug]
section in application ini file (/opt/app1/conf/app.ini):

[@debug]

banksv= ndrx=5 ubf=0 tp=5 file=${NDRX_APPHOME}/log/BANKSV
bankcl= ndrx=5 ubf=0 tp=5 file=${NDRX_APPHOME}/log/BANKCL
ud= ndrx=5 ubf=0 file=${NDRX_APPHOME}/log/UD

To learn more about debug configuration, see ndrxdebug.conf(5) manpage, note that document describes both formats legacy,
where separate file was used and current one with Common-Configuration (i.e. using ini file section).

If at this step we try to boot an application server, it should start fine, except that banksv binary won’t be found:

$ cd /opt/appl/conf

$ source setappl

$ xadmin start -y

Enduro/X 5.4.1, build Nov 7 2018 08:48:27, using SystemV for LINUX (64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2009-2016 ATR Baltic Ltd.
Copyright (C) 2017,2018 Mavimax Ltd. All Rights Reserved.

This software is released under one of the following licenses:
AGPLv3 or Mavimax license for commercial use.

* Shared resources opened...

x Enduro/X back-end (ndrxd) is not running

* ndrxd PID (from PID file): 4716

* ndrxd idle instance started.

exec banksv -k OmyWISnu -i 1 -e /opt/appl/log/BANKSV -r —-—

process 1d=4720 ... Died.
exec banksv -k OmyWI5Snu —-i 2 -e /opt/appl/log/BANKSV -r ——
process 1id=4723 ... Died.

Startup finished. 0 processes started.

This is ok, we have configured two copies of banksv Enduro/X servers, which we are not yet built, thus we get the error.
If you run ‘xadmin’ and get following error:

S xadmin
Failed to initialize!

Then this typically means, that you do not have configure operating system properly see Operating System configuration
section. More info is logged to /opt/app1/log/xadmin.log

Getting Started Tutorial

7/18

Chapter 5

Creating the server process

Firstly to create a "bank" server, we will have to define the fields in which we will transfer the data. We will need following

fields:

* T_ACCNUM - Account number, type string
* T_ACCCUR - Account currency, type string
* T_AMTAVL - Available balance in account, type double

So we will create a service "BALANCE" to which we will T_ACCNUM and T_ACCCUR. The process will return balance in

T_AMTAVL.

5.1 Defining the UBF fields

Required fields will be define into /opt/app1/ubftab/bank.fd with following contents:

S %

Sx+ Bank app field definitions for UBF buffer

Sk ok

Sx/

S#ifndef _ BANK_H
S#define _ BANK_H

*base 1000

#NAME ID TYPE FLAG COMMENT

#,,,, - - -

Service name for UD

T_ACCNUM 1 string - Account number
T_ACCCUR 2 string - Account currency
T_AMTAVL 3 double - Account balance
S#endif

To generate C header fields for UBF buffer, run ‘mkfldhdr’ command in /opt/app1/ubftab folder:
$ mkfldhdr
NDRX:5: 2038:000:20151116:033733008:f1ldhdr.c:0290:Finished with : SUCCESS

g 1y =1
total 16

Getting Started Tutorial 8/18

—-rw-r——-r——. 1 userl userl 459 Nov 16 03:36 bank.fd
—-rw—rw-r—-—. 1 userl userl 525 Nov 16 03:37 bank.fd.h
—-rw-r——-r——. 1 userl userl 3704 Nov 16 03:18 Exfields
—-rw-rw-r——. 1 userl userl 3498 Nov 16 03:37 Exfields.h

5.2 Server source code

We will have sample server process which will just print in trace file account, currency. In return it will set "random" balance in
field "T_AMTAVL". The source code of /opt/app1/src/banksv/banksv.c looks as follows:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

/* Enduro/X includes: x/
#include <atmi.h>
#include <ubf.h>
#include <bank.fd.h>

#define SUCCEED 0
#define FAIL -1

/[x %
* BALANCE service
*/
void BALANCE (TPSVCINFO #*p_svc)
{
int ret=SUCCEED;
double balance;
char account[28+1];
char currency[3+1];
BFLDLEN len;

UBFH *xp_ub = (UBFH *)p_svc—>data;
fprintf (stderr, "BALANCE got call\n");

/+ Resize the buffer to have some space in... */
if (NULL==(p_ub = (UBFH x)tprealloc ((char x)p_ub, 1024)))
{
fprintf (stderr, "Failed to realloc the UBF buffer - %$s\n",
tpstrerror (tperrno));
ret=FAIL;
goto out;

/+* Read the account field */

len = sizeof (account);

if (SUCCEED!=Bget (p_ub, T_ACCNUM, 0, account, &len))
{

fprintf (stderr, "Failed to get T_ACCNUM[O]! - $%s\n",
Bstrerror (Berror)) ;
ret=FATL;

goto out;

/* Read the currency field =/

Getting Started Tutorial

9/18

len = sizeof (currency);
if (SUCCEED!=Bget (p_ub, T_ACCCUR, 0, currency, &len))
{

fprintf (stderr, "Failed to get T_ACCCUR[O0]! - $%s\n",
Bstrerror (Berror));
ret=FAIL;

goto out;
fprintf (stderr, "Got request for account: [%s] currency [%$s]\n",
account, currency);

srand (time (NULL)) ;
balance = (double)rand()/ (double)RAND_MAX + rand();

/* Return the value in T_AMTAVL field */

fprintf (stderr, "Retruning balance %$1f\n", balance);

if (SUCCEED!=Bchg(p_ub, T_AMTAVL, 0, (char =x)&balance, O0L))
{

fprintf (stderr, "Failed to set T_AMTAVL! - %s\n",
Bstrerror (Berror));
ret=FATL;

goto out;

out:
tpreturn(ret==SUCCEED?TPSUCCESS:TPFAIL,

0L,
(char *)p_ub,
0L,
0L) ;

}

/ x %

* Do initialization

x/

int tpsvrinit (int argc, char *xargv)
{
if (SUCCEED!=tpadvertise ("BALANCE", BALANCE))
{
fprintf (stderr, "Failed to advertise BALANCE - %s\n",
tpstrerror (tperrno));
return FAIL;

return SUCCEED;

/ x*
* Do de-initialization
x/

void tpsvrdone (void)

{
fprintf (stderr, "tpsvrdone called\n");

Very simple Makefile will look like (/opt/app1/src/banksv/Makefile):

banksv: banksv.c

Getting Started Tutorial 10/18

cc —o banksv banksv.c -I. -I ../../ubftab -latmisrv —-latmi -lubf -lnstd -lrt -1dl - ¢«
1lm

Build the binary:

$ cd /opt/appl/src/banksv

S make

cc —-o banksv banksv.c -I. -I ../../ubftab -latmisrv -latmi -lubf -lnstd -lrt -1dl1 -1m
1s -1

total 20

—rwxrwxr-x. 1 userl userl 9937 Nov 16 04:11 banksv
—-rw-rw-r——. 1 userl userl 1926 Nov 16 04:07 banksv.c
-rw-rw-r——. 1 userl userl 105 Nov 16 04:01 Makefile

So binary is built next we will try to start it.

5.3 Booting the server process

To start the binary, first we need to copy it to binary directory:

$ cp /opt/appl/src/banksv/banksv /opt/appl/bin/banksv

Now start it with "xadmin start". This will cause to boot any unbooted processes to start (which previosly did not start because
we didn’t have ‘banksv’ executable in bin directory.

$ xadmin tart -y
Enduro/X 5.4.1, build Nov 12 2018 08:11:50, using SystemV for LINUX (64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2009-2016 ATR Baltic Ltd.
Copyright (C) 2017,2018 Mavimax Ltd. All Rights Reserved.

This software is released under one of the following licenses:
AGPLv3 or Mavimax license for commercial use.

* Shared resources opened...

* Enduro/X back-end (ndrxd) is not running

* ndrxd PID (from PID file): 22128

* ndrxd idle instance started.

exec banksv -k OmyWI5Snu -i 1 -e /opt/appl/log/BANKSV -r —-—

process 1d=22132 ... Started.
exec banksv -k OmyWI5Snu —-i 2 —-e /opt/appl/log/BANKSV -r —-—
process 1d=22136 ... Started.

Startup finished. 2 processes started.

To check that our BALANCE service is advertised, we can execute command "xadmin psc" - print services:

$ xadmin psc
Enduro/X 5.4.1, build Nov 12 2018 08:11:50, using SystemV for LINUX (64 bits)

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2009-2016 ATR Baltic Ltd.
Copyright (C) 2017,2018 Mavimax Ltd. All Rights Reserved.

This software is released under one of the following licenses:
AGPLv3 or Mavimax license for commercial use.

* Shared resources opened...
* ndrxd PID (from PID file): 22128
Nd Service Name Routine Name Prog Name SRVID #SUCC #FAIL MAX LAST STAT

Getting Started Tutorial 11/18

1 BALANCE BALANCE banksv 1 0 0 Oms Oms AVAIL
1 BALANCE BALANCE banksv 2 0 0 Oms Oms AVAIL

We see here two copies for banksv binaries running (Server ID 1 & 2). Both advertises "BALANCE" service.

5.4 Testing the service with "ud" command

It is possible to call the service with out a client process. This is useful for testing. Service can be called with ‘ud’ utility. In
which we define the target service name and any additional UBF buffer fields. In our case these fields are T_ACCNUM and
T_ACCCUR, which are mandatory for the service. So we will create a ‘test.ud’ file in folder /opt/app1/test. /opt/appl/test/test.ud
looks like:

SRVCNM BALANCE
T_ACCNUM ABC123467890
T_ACCCUR EUR

To call the service just pipe the data to the ‘ud’:

$ ud < /opt/appl/test/test.ud
SENT pkt (1) is :

T_ACCNUM ABC123467890
T_ACCCUR EUR

RTN pkt (1) is :

T_AMTAVL 1355808545.118969
T_ACCNUM ABC123467890
T_ACCCUR EUR

We see that our "dummy" balance returned is "1355808545.118969". So test service is working ok. Now we should write a client
app, which could call the service via tpcall() XATMI API call.

Getting Started Tutorial

12/18

Chapter 6

Creating the client application

Bank client application will setup T_ACCNUM and T_ACCCUR fields and will call "BALANCE" service, after the call client

application will print the balance on screen.

6.1 Client binary source code

Code for client application: /opt/app1/src/bankcl/bankcl.c

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>

#include <atmi.h>
#include <ubf.h>
#include <bank.fd.h>

#define SUCCEED 0

#define FAIL -1

[**
* Do the test call to the server
*/

int main (int argc, charx* argv) {

int ret=SUCCEED;
UBFH *p_ub;

long rsplen;
double balance;

/+ allocate the call buffer =/
if (NULL== (p_ub = (UBFH *)tpalloc ("UBF", NULL,
{

fprintf (stderr, "Failed to realloc the UBF buffer - %$s\n",

tpstrerror (tperrno)) ;
ret=FAIL;
goto out;

/+ Set the data */

1024)))

if (SUCCEED!=Badd (p_ub, T_ACCNUM, "ACC00000000001", O0)

SUCCEED ! =Badd (p_ub, T_ACCCUR, "USD", 0))

Getting Started Tutorial 13/18

fprintf (stderr, "Failed to get T_ACCNUM[O]! - $%s\n",
Bstrerror (Berror));
ret=FAIL;

goto out;

/* Call the server x/
if (FAIL == tpcall ("BALANCE", (char *)p_ub, 0L, (char =xx)&p_ub, &rsplen,0))

{
fprintf (stderr, "Failed to call BALANCE - %s\n",

tpstrerror (tperrno)) ;
ret=FAIL;
goto out;

/* Read the balance field x/

if (SUCCEED!=Bget (p_ub, T_AMTAVL, 0, (char =x)&balance, 0L))
{

fprintf (stderr, "Failed to get T_AMTAVL[O0]! - $%s\n",
Bstrerror (Berror));
ret=FAIL;

goto out;

printf ("Account balance is: %.21f USD\n", balance);

out:
/+ free the buffer =/
if (NULL!=p_ub)
{
tpfree((char x)p_ub);

/* Terminate ATMI session =*/
tpterm() ;
return ret;

Makefile (/opt/app1/src/bankcl/Makefile) looks like:

bankcl: bankcl.c
cc —o bankcl bankcl.c -I. -I ../../ubftab -latmiclt -latmi -lubf -lnstd -lrt -1dl - ¢«

1m

Once both bankcl.c and Makefile is created, you can run the build process:

$ cd /opt/appl/src/bankcl

$ make

$ 1s -1

total 20

—rwxrwxr—-x. 1 userl userl 9471 Nov 22 13:34 bankcl
-rw—-rw-r——. 1 userl userl 1380 Nov 22 13:34 bankcl.c
—-rw-rw-r——. 1 userl userl 105 Nov 22 13:32 Makefile

6.2 Running the client process

We will start the application from the same build directory. The results are following:

Getting Started Tutorial 14/18

$ /opt/appl/src/bankcl/bankcl
Account balance is: 883078058.68 USD

Getting Started Tutorial 15/18

Chapter 7

Deploy "banksv" in Docker container

To deploy the example files in Docker container, follow the instructions found in endurox-docker repository: https://github.com/-
endurox-dev/endurox-docker

https://github.com/endurox-dev/endurox-docker
https://github.com/endurox-dev/endurox-docker

Getting Started Tutorial 16/18

Chapter 8

Conclusions

From the above sample it could be seen that creating a ATMI application is pretty easy and straight forward. This appli-
cation was very basic, just doing the call to Enduro/X service. However the same application could work in cluster, where
"BALANCE" service can be located on different physical machine and ‘bankcl” will still work, as platform will ensure the
visibility of the "BALANCE" service, see the [TPBRIDGE] for clustering. The source files of the sample app are located in
"getting_started_tutorial-files/opt/app1" folder.

Getting Started Tutorial

17/18

Chapter 9

Additional documentation

9.1 Internet resources

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]

[ATMI-API] http://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgint6.htm
[FML-API] http://docs.oracle.com/cd/E13203_01/tuxedo/tux91/fml/index.htm
[EX_ADMINGUIDE] ex_adminman(guides)

[MQ_OVERVIEW] man 7 mq_overview

[EX_ENV] ex_env(5)

[NDRXCONFIG] ndrxconfig.xml(5)

[DEBUGCONF] ndrxdebug.conf(5)

[XADMIN] xadmin(8)

[TPBRIDGE] tpbridge(8)

http://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgint6.htm
http://docs.oracle.com/cd/E13203_01/tuxedo/tux91/fml/index.htm

Getting Started Tutorial 18/18

Chapter 10

Glossary

This section lists

ATMI

Application Transaction Monitor Interface

UBF
Unified Buffer Format it is similar API as Tuxedo’s FML

	About the guide
	Operating System configuration
	Installing binary package (RPM for Centos 6.x)
	Configuring the application environment
	Creating the server process
	Defining the UBF fields
	Server source code
	Booting the server process
	Testing the service with "ud" command

	Creating the client application
	Client binary source code
	Running the client process

	Deploy "banksv" in Docker container
	Conclusions
	Additional documentation
	Internet resources

	Glossary

