TPCACHE.INI(5)

TPCACHE.INI(5)

TPCACHE.INI(5)

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

TPCACHE.INI(5)

Contents

1 SYNOPSIS

2 DESCRIPTION

3 DEFINITIONS

4 DATABASE DEFINITION
5 DATABASE FLAGS

6 CACHE DEFINITION
7 CACHE FLAGS

8 PERFORMANCE

9 EXAMPLE

10 BUGS

11 SEE ALSO

12 COPYING

10

11

12

14

15

16

TPCACHE.INI(5)

1/16

Chapter 1

SYNOPSIS

[@cachedb/DBNAME_SECTION]
cachedb=DBNAME_DB
resource=DATABASE_DIRECTORY
flags=FLAGS
1limit=LIMIT
expiry=EXPIRY
max_readers=MAX_READERS
max_dbs=MAX_NAMED_DBS
map_size=MAP_SIZE

perms=DB_PERMISSTIONS

[@Qcachedb/DBNAME_ 2]

[@cachedb/DBNAME_N]

[Rcache]

svc SERVICE_NAME=

{

"caches": [

{

"cachedb" :"CACHE_DBNAME",
"flags":"CACHE_FLAGS",

"type":"TYPE",

"subtype":"SUBTYPE",

"rule":"RULE",

"keyfmt" : "KEYFMT",

"save":"SAVE",

"delete":"DELETE",
"rsprule":"RSPRULE",

"refreshrule" :"REFRESHRULE",
"inval_svc":"INVAL_SVC",
"inval_idx":"INVAL_IDX",
"keygrpdb" : "KEYGRPDB",
"keygrpfmt":"KEYGRPFMT",
"keygrpmaxtperrno": "KEYGRPMAXTPERRNO",
"keygrpmaxtpurcode": "KEYGRPMAXTPURCODE",
"keygroupmrej" : "KEYGROUPMREJ",
"keygroupmax" : "KEYGROUPMAX"

TPCACHE.INI(5) 2/16

"cachedb" :"DBNAME_2",

b

]
}
svc SERVICE_NAME_N=
{
"caches": [

{
"cachedb" :"DBNAME_N",

}y

TPCACHE.INI(5) 3/16

Chapter 2

DESCRIPTION

Enduro/X supports tpcall(3) caching, by writing results into LMDB. LMDB is integral par to of the Enduro/X. To avoid conflict
with users choice of LMDB version, the embedded version is renamed to "EXDB", so that global C symbols does not conflict. To
configure Enduro/x tpcall caching, firstly database must be configured. Enduro/X uses approach, that each database is stored into
separate file system directory. On Linux systems (or others which support RAM drivers), the directory can be defined in RAM
drive, and thus avoid the cache writing to disk (as the LMDB uses memory mapped files). On Linux for this purpose /dev/shm
can be used.

Caching is performed at service level. Thus when software is doing tpcall(3), the client’s call is intercepted, and tested against
cache. If saved data is found, then data is directly returned from LMDB and no service invocation is done.

Each cached item must have a key. The key is build from the call data. Key is zero (0x00 byte) terminated string. Key format
is given in cache configuration. Before lookup to DB is made, rule expression is tested. This indicates either the call must be
cached or not. If rule is true, key is built and with key DB is tested, if result is found, it is returned to caller. If result is not found,
then service invocation is performed. When service responds, data is written to cache.

Service can have multiple caches, with different rules. Once request is processed the first cache which matches the rule is used
for lookup or data saving.

Each cache references database definition, single database can be use by multiple caches or each cache can have it’s own database.
Keeping multiple databases could make better performance for caches were often writes are done. As concurrent writes are
synchronized so that only one process writes to the same database.

If writing to the same database, user shall ensure that keys are unique between different service cache definitions. This can be
reached by adding different prefixes in key format.

TPCACHE.INI(5) 4/16

Chapter 3

DEFINITIONS

Simple cache - this is cache were data is saved in one cache database. No linked databases are used.

Keygroup is separate database where records can be grouped. For example by user id. The group record holds the UBF buffer
with string key occurrences which are linked in the group. Keygroup database name is encoded as

Keyitem is linked record to the group.

TPCACHE.INI(5) 5/16

Chapter 4

DATABASE DEFINITION

DBNAME_SECTION
In case of simple database. This is a name of the database. For example "cachedbl". Allowed symbols a-z, A-Z, 0-9.
In case of keygroup or keyitems databases, format for section is "<dbname>/<logical_db_name>. For the caches the db
names are encoded as "<logical_db_name>@<dbname>". Parameter is mandatory.

DBNAME_DB
This is database name. For simple caches, name must be the same as DBNAME_SECTION. For keygroup or keyitems
databases name format is "<logical_db_name>@<dbname>". Parameter is mandatory.

DATABASE_DIRECTORY
This is file system directory where cache database is located. The directory must exist when application domain is started.
In case of keygroup and keyitems databases, the directory must be the same. Parameter is mandatory.

FLAGS
This is comma separated list of keywords - flags. See next section for list of flags supported for cache db.

LIMIT
If number of cached items in database must be limited (for example 1000 recs max), then the number is defined by this
parameter. If this parameter is set then one of the following flags must be present fifo, Iru or hits - delete strategy. So that
tpcached(8) process would know how to sort and which records to remove. The limit is not guaranteed maximum. As
records are removed by tpcached daemon, there could be times that limit is overreached, because tpcached works with
periods. And during the sleep time, more records could be added to db and only after sleep period tpcached will zap them.

EXPIRY
Time specification for record to live in cache. After time is passed, the tpcached process will zap the record. The
configuration is specified as: N+s for seconds, (e.g. 20s), N+.D+m for minutes (e.g. 30.5m - 30 min, 30 sec) or N+.D+h
for hours (e.g 3.5h, will store message for 3 hours and 30 minutes).

MAX_READERS
See LMDB documentation for this. Basically this is number of threads used by process. See LMDB’s mdb_env_set_maxreaders()
function description. The default value set by Enduro/X is 1000.

MAP_SIZE
Maximum size of the database in bytes. The size must be multiple of OS page size. See LMDB’s mdb_env_set_mapsize()
function description. The default value used by Enduro/X is 10485760. Postifx multiplier can be used for value in
configuration: kK(x1000) mM (x1000°000) gG (x1000°000°000) e.g. 10M.

MAX_NAMED_DBS
Maximum number of "named" logical databases in given resource. Named DB is only uses with "@" syntax, and usually
only for keygroups (to keep transactions atomic between two DBs). The default value is 2.

DB_PERMISSIONS
Octal permissions for map files on file system. The default value is 0664.

TPCACHE.INI(5) 6/16

Chapter 5

DATABASE FLAGS

bootreset
Clean up the cache database when Enduro/X application domain is booting. The reset is performed by tpcachebtsv binary.
Thus this binary must be configured in ndrxconfig.xml(5). And it should be one of the first XATMI servers booted. The
tpcachetbsv simple removes database files at boot.

bcastput
Should process perform broadcast (send event) of putting data in cache. If this is set and data is put into cache. This
invokes calling tpevsrv with current tpcall response data buffer. Event is @ CPNNN//<SVCNM>. Where NNN is cluster
node id.

bcastdel
When cache data is deleted either by invalidate cache or by tpcached operations, if flag is set, the event is broadcasted
to tpevsrv. The event in case of invalidated is @ CDNNN/F/<SVCNM> (which contains the data buffer by which data is
deleted. It is buffer which performs invalidate, not the actually stored data. Data is processed by cache’s delete parameter
which might limit the data sent for deletion over the event server - in order to save some traffic). The NNN is cluster node
id which initiates the invalidate. The F is flags, in case if is G, then whole group is deleted if record is part of the keygroup,
otherwise F flag (full) is sent.

timesync
In case if of network update received (add to cache) message, the message will be added to cache with out replacing the
existing record. The caller will receive the latest record by time stamp.

scandup
In case of timesync mode, the database may accumulate duplicate records, thus if this flag is set, the tpcached daemon
will scan the cache records and erase the older records. Note that duplicates also are removed during real time data lookup.

clrnosve
Clear cache when service for which data is cached, is not advertised anymore by any XATMI server. The cleanup is
performed by tpcached.

keyitems
This is key-items database. Required flag for keygroup items database pair.

keygroup
This database is for storing key-groups. Note that when using key-group, both keyitems and keygroup must be in the same
physical resource. And syntax for boths databases must be "<logical_db_name>@<dbname>".

nosync
Do not perform fsync (flush to disk) when committing transaction. This is suitable for caches which are reset at boot. Used

for performance increase. In case of persisted databases (used after reboot), at case of crash, this data might be corrupt.
See MDB_NOSYNC mode for mdb_env_open().

TPCACHE.INI(5) 7/16

nometasync
Flush metadata only when doing commit. The risks are the same as with nosync. Recommended for non persisted caches.
See MDB_NOMETASYNC for mdb_env_open() function.

TPCACHE.INI(5) 8/16

Chapter 6

CACHE DEFINITION

CACHE_DBNAME
Reference to database name. This must match with chosen storage db DBNAME_DB.

CACHE_FLAGS
Flags of the cache (comma separate of flags for cache). See section bellow for flags available.

TYPE
This is buffer type name for which cache is designed. Currently supported type is UBF.

SUBTYPE

This is buffer sub type. For example for VIEW buffers this is view name. Currently this parameter is reserved for future
use.

RULE
This is buffer type specific expression for defining the rule in which case the call shall be cached/cache-looked-up or not. If
rule is not specified, then by default call is accepted for cache. In case if TYPE is UBF, then standard boolean expression
applies here.

KEYFMT
This is buffer type specific format. For UBF fields this is format string which might contain field free text with for-
mat of $(UBF_FIELD), where given construction will be substituted with UBF field value of field UBF_FIELD. For
example having T_STRING_3_FLD equal to ABC and T_STRING_2_FLD occurrence 2 equal to XX’ and format string
SVIS$(T_STRING_3_FLD)-$(T_STRING_2_FLD[1]), then key will render as SVIABC-XX. Key is used to distinguish un-
der which record to save the data and how to lookup data into database.

SAVE
This field specifies how data is saved into cache. It is type specific and and flags specific. For UBF buffer with flag putfull
full UBF buffer is saved. If flag is not specified and SAVE is set to * then full buffer is saved too. If flags is not specified,
but it is comma separated list of UBF fields, then only those fields are saved to cache. If flags is set to putrex, then SAVE
field shall contain regular expression which is executed on buffer fields (names). The names which matches expression are
added to cache.

DELETE

This field specifies field which shall be broadcast to other cluster node in case if invalidate their cache is performed. This
makes a projection of incoming buffer in order to save the traffic. The projected buffer is then sent to event server for other
cluster node processing. Rules for the field syntax is similar to the SAVE parameter. For UBF buffer with flag delfull full
UBF buffer is sent in event. If flag is not specified and SAVE is set to * then full buffer is sent too. If flags is not specified,
but it is comma separated list of UBF fields, then only those fields are sent in event. If flags is set to delrex, then DELETE
field shall contain regular expression which is executed on buffer fields (names). The names which matches expression are
added to to buffer which is sent to other cluster node.

TPCACHE.INI(5) 9/16

RSPRULE
This is boolean expression with following two fields in buffer EX_TPERRNO which corresponds to tperrno of tpcall()
and EX_TPURCODE corresponds to tpcall() user return code. If RSPRULE setting is not present, then cached are only
successful calls (i.e. EX_TPERRNO==0).

REFRESHRULE
Optional type specific expression. When performing tpcall(), the saved data is returned from cache. In case if this expres-
sion is defined and executes true on tpcall buffer,the real service all will be performed, even if data in cache are present.
For UBF buffers this is boolean expression.

INVAL_SVC
This is service name if "their" service to be invalidated. When service call is performed, this "allows" to intercept the call
and when response is received the other service cache, specified in INVAL_SVC will be reset (removed cached data). The
key used for data access is build by this invalidate cache and not by target INVAL_SVC cache definition. If target cache
uses invalkeygrp flag, then then whole group is invalidated. The group access is made by KEYGRPDB and KEYGRPFMT.

INVAL_IDX
This is cache index (zero based array index) of target invalidate service cache. This must be defined in case if INVAL_SVC
parameter is used, this parameter must be set too.

KEYGRPDB
Optional key group database name. The database must be consists be in format of <logical database>@<physical database
name>. If using KEYGRPDB DB, then the CACHE_DBNAME must be set in the same format. So that logical names for
cache database is different but physical is the same. Physical resources must be the same for LMDB, for need to ensure
transactional consistency between group and items.

KEYGRPFMT
This format string to build a key for a group. It shall be lower level of object "resolution”, to have something common
between linked KEYFMT. For example if paging (user iterates over her statement) needs to be cached and invalidated at
any single transaction, then KEYGRPFMT is the userid and KEYFMT shall contain userid and page number. The syntax for
KEYGRPFMT is the same as for KEYFMT is buffer type specific. Field is conditional, must be present when configuring
key group.

KEYGROUPMAX
Key group can be used to protect against DoS attacks - by limiting number of "new" records that can appear in key
group. The time component is processed by tpcached binary, which could remove key group after it is expired. They
KEYGROUPMAX is number records allowed in key group. Parameter is optional.

KEYGROUPMRE]
This is buffer definition which shall be filled in response (merged or replaced according to flags) in case if cache lookup
is made, request is part of key group, record does not exists and number of records in key group already reached KEY-
GROUPMAX. In this case service call is denied and response is filled with buffer definition found in this parameter. For
UBF buffers, it is UBF buffer defined in JSON format (see tpjsontoubf(3) man page). Parameter is conditional and must
be present in case if KEYGROUPMAX is set.

KEYGRPMAXTPERRNO
In case of doing reject for KEYGROUPMAX max reached, this is TP error code that tpcall(3) will return. Normally it
would be 11 (service routine error). Parameter is optional, if not present the error value will be 0 - no error, thus data
should indicate that reject was performed.

KEYGRPMAXTPURCODE
Value of user return code in case if doing key group max reject. See tpurcode(3). Parameter is optional and if not set and
reject will be performed, user return code value will be 0.

TPCACHE.INI(5) 10/16

Chapter 7

CACHE FLAGS

putfull
Flag indicates that when saving data to cache full XATMI buffer shall be saved. In case if putfull or putrex is not present
then SAVE parameter is analyzed.

putrex
Indicates that SAVE field is regular expression. putfull and putrex flags cannot be mixed.

getreplace
Flag indicates that if data is returned from, then buffer passed to tpcall(3) must be replaced with data from cache.

getmerge
Flag indicates that if data is returned from, then buffer passed to tpcall(3) must be merged with incoming data. If using
UBF buffer type then for merge operation Bupdate(3) is used. Where destination buffer is buffer passed to tpcall(3) and
source buffer is one save in cache.

nosvcok
If flag is set and service call is made (tpcall(3)) to service which is not currently advertised, but cached data exists in cache,
then return result from cache as if the the service was advertised and working ok. For such case if flag is not present, the
system will respond with error TPENOENT.

next
Flag indicates that next cache (if having multiple for single service) should be processed, after this one. Flag is suitable for
cases when current cache is invalidate their. Thus invalidate is performed and for example at next cache would be actually
save results. Or multiple invalidates can be configured.

delfull
When using invalidate cache, then this flag indicates that full XATMI buffer sent to tpcall() shall be broadcasted (published
in event) to other nodes. In case of UBF buffer if flag is not present, then * in DELETE cache parameter indicates all fields
must be Broadcast. If not * then it is comma separated list of fields.

delrex
This indicates that DELETE parameter is regular expression. In case of UBF buffer, the expression is executed on each
field in incoming buffer, if field name matches expression, then it is added to broadcast list.

inval
Flag indicates that this cache is invalidate. In this case cache parameters INVAL_SVC and INVAL_IDX must be present.

invalkeygrp
If performing invalidated of record and record is part of key group, then delete whole key group (all linked records and
group by it self). If flag is not present, then single record is delete (keyitem) and group is updated (linkage removed from
group). This flag applies to all mechanisms how record can be removed, either by invalidate their, or zapped by tpcached
or deleted by xadmin tooling.

TPCACHE.INI(5) 11/16

Chapter 8

PERFORMANCE

For performance reasons, if non persistent cache is required, it is recommended to store data file in RAM driver, for example on
GNU/Linux systems it is /dev/shm. It is considered that in such scenario LMDB will use twice the memory. As one is a copy in
RAM drive and another is mapped pages in process to the file. It is up to kernel realization to make some optimizations here.

TPCACHE.INI(5)

12/16

Chapter 9

EXAMPLE

Simple caches

[Rcachedb/db02_1]
cachedb=db02_1
resource=${TESTDIR_DB}/db02_1
flags=bootreset

[@Qcachedb/db02_2]
cachedb=db02_2

resource=S${TESTDIR DB} /db02_2
flags=bootreset

[Rcache]

svc TESTSVO02=

{

"caches": [

{

svc SOMEOTHERSVC=

{

"caches": [

{

"cachedb":"db02_1",

"type" . "UBF " ,

"keyfmt":"SV2-$ (T_STRING_FLD) ",

'lsave" : "*"’
"ryle":"T_STRING_2_FLD=='HELLO CACHE 1’"

"cachedb":"db02_2",
"type " 5 "UBF n ,
"keyfmt":"SV2-$ (T_STRING_FLD)",

"save":"T_STRING. x|T_FLOAT.*|T_LONG_2_FLD|T_SHORT.

"flags":"putrex"

"cachedb":"db02_1",

Iltypell < "UBE" ,

"keyfmt":"SVOTHER-$ (T_STRING_FLD) ",
"save":"x",

TPCACHE.INI(5) 13/16

Cache with keygroup and buffer reject:

[@cachedb/dbl5]
max_dbs=2
resource=S${TESTDIR_DB}/dbl5
subscr=@C.001/.%x/.x|@C.002/.%/.%

#

These two inherits settings from above.
#

[@Qcachedb/dbl15/g]

cachedb=g@dbl5
flags=bootreset,bcastput,bcastdel, keygroup
expiry=30s

[Qcachedb/dbl15/k]

cachedb=k@dbl5
flags=bootreset,bcastput,bcastdel, keyitems
expiry=10s

[Rcache]

svc TESTSV15=
{
"caches": [
{
"cachedb":"k@db1l5",
"keygrpdb":"g@dbl5",
"type":"UBE",
"keyfmt":"SV15$ (T_STRING_FLD)-SV15$ (T_SHORT_FLD)",
"keygrpfmt":"SV15$ (T_STRING_FLD) ",
"save":"T_STRING_FLD, T_STRING_2_FLD,T_LONG_2_FLD,T_SHORT_FLD",
"flags":"getmerge",

"keygroupmax":"7",
"keygroupmrej": " {\"T_STRING_3_FLD\":\"REJECT\",\"T_LONG_2_FILD\": [\"1\", ¢«
\IIZ\II] }ll,

"keygrpmaxtperrno":"11",
"keygrpmaxtpurcode":"4"

For more unit tests please see atmitest/test048_cache unit test folder ini files.

TPCACHE.INI(5) 14 /16

Chapter 10

BUGS

Report bugs to support@mavimax.com

mailto:support@mavimax.com

TPCACHE.INI(5) 15/16

Chapter 11

SEE ALSO

xadmin(8) ndrxd(8) ndrxconfig.xml(5) tpcached(8) tpcachesv(8) tpcachebtsv(8)

TPCACHE.INI(5) 16/16

Chapter 12

COPYING

© Mavimax, Ltd

	SYNOPSIS
	DESCRIPTION
	DEFINITIONS
	DATABASE DEFINITION
	DATABASE FLAGS
	CACHE DEFINITION
	CACHE FLAGS
	PERFORMANCE
	EXAMPLE
	BUGS
	SEE ALSO
	COPYING

