Persistent Message Queues Overview

Persistent Message Queues Overview

Persistent Message Queues Overview

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

1.0

2016-05

Initial draft

MV

Persistent Message Queues Overview

Contents

1 Persistent queues

2 How the persistent queues work?

3 How to use EnduroX persistent queues

4 tmqueue ATMI server configuration

5 Queue configuration

6 Sample ATMI client for enqueue & dequeue
7 Managing the runtime

8 Runtime queue reconfiguration

9 Further study

10 Additional documentation

10.1 INternet rESOUICES v . v v v e e e e e e e e e e e e e e e e

11 Glossary

12

15

16

17
17

18

Persistent Message Queues Overview 1/18

Chapter 1

Persistent queues

EnduroX system is built on kernel based real-time IPC queues. Which by definition are not persistent. When server is restarted,
memory data is lost, thus the data in message queues are lost. In some of the application scenarios persistent messaging is
required. Thus EnduroX offers standard ATMI calls such as fpenqueue() and tpdequeue(). System also supports automatic
queues, where messages are automatically forwarded to configured services.

Messages are stored in file system. To ensure transactional operation, file move/rename is employed which by it self (in the terms
of one file system) is transactional.

The queues are grouped into queue spaces. Queue space grouping element of multiple queue servers. Queue space basically is
service name for backing tmqueue server. Each queue server can stores it’s data in specified file system folders. The tmqueue
server works in tandem with fmsrv to ensure the compatibility with global transaction processing.

Persistent Message Queues Overview 2/18

Chapter 2

How the persistent queues work?

The persistent queues in EnduroX application server are provided by special ATMI server, named "tmqueue". To start using these
queus, firstly you have to configure the tmqueue and paired tmsrv.

The queue processing can be devided in following steps:

—_—

. tmqueue advertizes queue space services

Caller invokes tpenqueue() ATMI API call. This calls the tmqueue server with passed in buffer data and other flags.

tmqueue server recieves the request, saves lookups the queue, and creates the linked list in memory where to store the
message. In the same time message is written to disk in active folder. Initially message is marked as locked, the message
becomes dequeueable at the point when XA transaction is committed. At the commit point, the tmsrv with loaded EnduroX
queue driver, completes the message (moves it to committed folder). At the smae point fmsrv sends the notification to
tmqueue to unlock the message. NOTE: It is not possible to enqueue and dequeue same message in single transaction.

When message is unlocked, it is available for fpdequeue(). Where the application invokes this function and, it calls the
tmqueue() for the message. If message is found it again becomes locked, and command file is issued to disk for message file
removal. Once the dequeue transaction is committed, the XA driver completes the operation, by removing the command
file, message file and sending notification back to tmqueue, that command REMOVE is completed. At this point tmqueue
server removes the message completely from memory.

. In case if queue is defined as automatic, the forward threads from tmqueue server begins sending the message to destination

ATMI service. If service call fails, the call is retried configured number of times. If call succeeds and reply queue is sent,
then message is submitted to reply queue. If message fails (number of attempts exceeded) and failure queue is defined, the
forwarder thread will submit the message to failure queue. TPQCTL flags in this scenario is preserved.

Schematically internals of the rmgueue and API works can be displayed as follows:

Persistent Message Queues Overview 3/18

API LAYER

tpengueus() tpdequeue() $ xadmin mglm ..

tpcall)) end ACK/NAK of the command
in case of commit/abort, tpcall() \

TMQUEUE Service. Multithreaded XATMI Server

Yy v ¥

TMQUEUE service ——» XA _QDISK_DRV

- Begin/fjoin XA txn Issue commands = —
e

Transaction

- Service commands
(save, upd counter,
unlink)

Manager (TMSREV)

Background
threads .
Add new message for sending msgs Xa commit
llock status update t0 Services xa abort
Xa_preare
L J

Queued message Registry (In memary)

HASH OF Q@ :
config (with Qmsq with
defaults) for attributes

unknawn Q + status
locked/unlocked

XA_QDISK_DRV

Save msq
to active folder,
file named after XID
| - prepare:; move "active” -» "prepared”
- commit: "prepared"” -> "committed”, rename X|D->MSG_ID
| - abort: remaove file from "prepared”
- commit other command: search for committed/<MSG D=
and do the action, on complete remove command file from "prepared”

HASH of
Messsage ID

HASH of
Caorrelator_ID

Dynamic HASH
of QUEUES

Q1" |M|S|G|S

"Q27MISIGIS

et o)

Persistent Message Queues Overview 4/18

Chapter 3

How to use EnduroX persistent queues

This section gives some oversight how to use persistent queues. There are two type of usages possible. One is that process
submits the message to the queue and another process manually dequeues the message, that is depicted here:

Ipengqueus "MYSPACZE". "MYC ", ...)
gepace: "MYSPACE'

1mqueus s rer
"@OSPMYSPACE"

Ipdequeus " MYSPACE". "MYC ", ..}
gepace: "MYSPACE'

And another use is that process does tpenqueue() to automatic queue, and message is automatically forwarded to destination
service. The schematics looks like this:

Persistent Message Queues Overview 5/18
tpenqueue("MY SPACE", "MY Q2" ..)
gspace: "NYSPACE" tpengueue()
"TESTESVC" answer,
if succesd & TPQREPLYQ =st
e e ..} "REPLY_Q"
Y@OSPMYSPACE"
tmqueus forwarder [T
does tpeall("TESTSVE!) :
tpcalll:'ll'rEsTsvcll'J u--n--n.----.-------....} IIFAILUH E_Q"
tpreturn(...) tpenqueus()

original message,

if tries exceeded and TPOFAILURED set

For tpenqueue() and tpdequeue() passed in buffers must be allocated with tpalloc(). For UBF, STRING and JSON buffers, the
actual buffer length on enqueue doesn’t matter, it is detected from data data inside. For array buffer, it does play a role. When
doing tpdequeue(), the the buffer type might be changed, if message have a different data type.

Persistent Message Queues Overview 6/18

Chapter 4

tmqueue ATMI server configuration

To configure queue sub-system, you need to start at-least one instance of tmqueue server and one instance of tmsrv. They both
must run in the same XA environment. For running just pure ATMI client, following entries to ndrxconfig.xml shall be done
(serverid and count (min/max) can be changed):

<servers>
<server name="tmsrv">
<max>1</max>
<srvid>1</srvid>
<sysopt>-e /opt/appl/log/tmsrv.log -r —- -tl -1/opt/appl/var/RM1</sysopt>
</server>
<server name="tmqueue">
<max>1</max>
<srvid>100</srvid>
<sysopt>-e /opt/appl/log/tmqueue.log -r -—- -m MYSPACE -g /opt/appl/conf/qg. ¢
conf -sl</sysopt>
</server>
</servers>

From above example it could be seen, that there are no setup for folder where to store the queue data. Queue folder is setup in in
XA open string, thus it goes to NDRX_XA_OPEN_STR and NDRX_XA_CLOSE environment variables.

For example if we are going to store the message data into /opt/app1/var/MYSPACE folder, then XA config looks like this:

export NDRX_XA_RES_ID=1

export NDRX_XA_ OPEN_STR="/opt/appl/var/MYSPACE"
export NDRX_XA_CLOSE_STR=S$NDRX_XA_OPEN_STR

Static registration:

export NDRX_XA_DRIVERLIB=libndrxxagdisks.so
export NDRX_XA_RMLIB=libndrxxaqgdisk.so

export NDRX_XA_LAZY_ INIT=1

In this sample, static registration XA driver (libndrxxaqdisks.so) will be use. Not if your application process wants to perform
the enqueue in transactional mode, then it must be started with valid XA environment.

Persistent Message Queues Overview 7/18

Chapter 5

Queue configuration

We will configure three queues here. The default queue (recommended), one manual queue and one automatic queue. From
above ndrxconfig.xml can be seen that queue configuration is given in /opt/app1/conf/q.conf file.

@, svenm=—, autog=n,tries=0,waitinit=0,waitretry=0,waitretryinc=0,waitretrymax=0, memonly=n

MYQ1l, svenm=—, autog=n,tries=0,waitinit=0,waitretry=0,waitretryinc=0,waitretrymax=0,memonly=n <>
,mode=fifo

MYQ2, svenm=TESTSVC, autog=y, tries=5,waitinit=1,waitretry=10,waitretryinc=5,waitretrymax=30, <
memonly=n, mode=1ifo

From above sample data, MYQ2 will send messages automatically to "TESTSVC" service, by initially waiting 1 second in queue,
if message fails, it it will send it again after 15 (10+5) seconds, if it fails again, it will send the message after 20 (10+5+5 as it is
try 3) seconds, up till 30 sec max wait time between retries.

Queue MYQI is defined as manual, and valid only for tpdequeue() call. For manual queues, service name (svcnm) and wait
parameters are not actual.

Persistent Message Queues Overview

8/18

Chapter 6

Sample ATMI client for enqueue & dequeue

This section contains C code for ATMI client which enqueues the message to Q and the dequeues it.

/ *
file: gclient.c

*/

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
finclude <atmi.h>

#define SUCCEED 0
#define FAIL -1

int main(int argc, charxx argv)

{

int ret = SUCCEED;
TPQCTL qc;
int i;

/+ Initial test... x/
for (i=0; i<15; i++)
{
char xbuf = tpalloc("CARRAY", "",

char xtestbuf_ref = tpalloc ("CARRAY",

long len=10;
printf("loop %d ... ", 1i);

testbuf_ref[0]=0
testbuf_ref[l]=1
testbuf_ref[2]=2
testbuf_ref[3]=3
testbuf_ref[4]=4;
testbuf_ref[5]=5
testbuf_ref[6]=6
testbuf_ref[7]=7
testbuf_ref[8]=8
testbuf_ref[9]=9

/+ alloc output buffer =/

10);

Persistent Message Queues Overview

9/18

if (NULL==buf)
{
fprintf (stderr, "tpalloc() failed %$s\n",
tpstrerror (tperrno));
ret = FAIL;
goto out;

/* enqueue the data buffer */

memset (&qc, 0, sizeof (gc));

if (SUCCEED!=tpenqueue ("MYSPACE", "MYQ1l", &gc, testbuf_ref,
len, TPNOTRAN))

fprintf (stderr, "tpenqueue () failed %s diag: %1d:%s\n",
tpstrerror (tperrno), gc.diagnostic, gc.diagmsqg);

ret = FAIL;

goto out;

/+ dequeue the data buffer + allocate the output buf. =*/
memset (&qgc, 0, sizeof(qc));

len = 10;
if (SUCCEED!=tpdequeue ("MYSPACE", "MYQ1l", &qc, &buf,
&len, TPNOTRAN))

fprintf (stderr, "tpenqueue () failed %$s diag: %$1d:%s\n",
tpstrerror (tperrno), gc.diagnostic, gc.diagmsqg);

ret = FAIL;

goto out;

/* compare — should be equal =/
if (0!=memcmnp (testbuf_ref, buf, len))

{
fprintf (stderr, "Buffers not equal!\n");
ret = FAIL;
goto out;

printf ("ok\n");

tpfree (buf);
tpfree(testbuf_ref);

if (SUCCEED!=tpterm())
{

fprintf (stderr, "tpterm failed with: %$s\n", tpstrerror (tperrno));
ret=FAIL;
goto out;

out:
return ret;

The code will be built with following command line (for Linux):

$ gcc gclient.c -o gcl -1 atmiclt -1 atmi -1 ubf -1 nstd -1 rt -1 dl -1 m

Persistent Message Queues Overview 10/18

By assuming that runtime is started, we will try to run the tests:

$ xadmin start -y
EnduroX v2.5.0 alpha, build May 16 2016 12:25:55

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2015, Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

EnduroX back-end (ndrxd) is not running
ndrxd PID (from PID file): 25799
ndrxd idle instance started.

exec tprecover -k OmyWI5S5nu -i 1 -e /opt/appl/log/RECOVER -r —-- -cl0
process 1d=25800 ... Started.
exec tpevsrv -k OmyWI5Snu -i 300 -e /opt/appl/log/TPEVSRV -r -N -s@TPEVPOST --
process 1id=25801 ... Started.
exec atmi.svl -k OmyWI5nu -i 1400 -e /opt/appl/log/ATMISV1 -r —-—
process 1d=25802 ... Started.
exec tmsrv -k OmyWI5nu -i 2000 -e /opt/appl/log/tmsrv.log -r —-— -tl -1l/opt/appl/var/RMl -— <=
process 1d=25803 ... Started.
exec tmqueue -k OmyWI5Snu -i 2010 —-e /opt/appl/log/tmqueue.log —-r —-— -m MYSPACE -q /opt/ <«
appl/conf/g.conf -sl1 —- :
process 1d=25815 ... Started.
exec cpmsrv -k OmyWI5Snu —-i 9999 -e /opt/appl/log/CPMSRV -r —- -i10 -k5 —-—
process 1d=25847 ... Started.

Startup finished. 6 processes started.

$ xadmin mglc
EnduroX v2.5.0 alpha, build May 16 2016 12:25:55

Enduro/X Middleware Platform for Distributed Transaction Processing
Copyright (C) 2015, Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

ndrxd PID (from PID file): 25799

Nd SRVID QSPACE ONAME FLAGS QDEF

1 2010 MYSPACE @ @, svenm=-, autog=n, tries=0,waitinit=0,waitretry=0, <
waitretryinc=0,waitretrymax=0,mode=fifo

1 2010 MYSPACE MYQ1 MYQ1l, svenm=-, autog=n, tries=0,waitinit=0,waitretry=0, <
waitretryinc=0,waitretrymax=0,mode=fifo

1 2010 MYSPACE MYQ2 MYQ2, svenm=TESTSVC, autog=y, tries=5,waitinit=1,waitretry ¢

=10, waitretryinc=5,waitretrymax=30,mode=1ifo

$./qcl

loop 0 ... ok
loop 1 ok
loop 2 ok
loop 3 ok
loop 4 ok
loop 5 ok
loop 6 ok
loop 7 ok
loop 8 ok
loop 9 ok
loop 10 ok

Persistent Message Queues Overview 11/18

loop 11 ... ok
loop 12 ... ok
loop 13 ... ok

loop 14 ... ok

Persistent Message Queues Overview

12/18

Chapter 7

Managing the runtime

This section contains overview of the xadmin commands available for queue management.

From above test session, can be seen how to list the queues, defined in system, by issuing mgqlc (list configuration command).
During the normal operations, system administrator might want to know, how many messages are present currently in queue and

what are queue statistics. For this purpose mglq (list queues) command can be used.

$ xadmin mglg
EnduroX v2.5.0 alpha, build May 16 2016 12:25:55

Enduro/X Middleware Platform for Distributed Transaction Processing

Copyright (C) 2015, Mavimax, Ltd. All Rights Reserved.

This software is released under one of the following licenses:
GPLv2 (or later) or Mavimax’s license for commercial use.

ndrxd PID (from PID file): 27208

Nd SRVID QSPACE ONAME #QUEU #LOCK #ENQ #DEQ #SUCC #FAIL
1 2010 MYSPACE MYQ1 0 0 15 15 0
1 2010 MYSPACE @ 0 0 0 0 0
1 2010 MYSPACE MYQ2 0 0 0 0 0

The above listings shows, that from MYQI 15 messages was enqueued and 15 was dequeued. In some cases you might want to
see the contents of the message in Q (if it is still there). You may use mgdm (dump message) command. By modifying above

example to not to remove messages from Q. We get following picture:

$ xadmin mglg

Nd SRVID QSPACE ONAME #QUEU #LOCK #ENQ #DEQ #SUCC #FAIL
1 2010 MYSPACE MYQ1 15 0 30 15 0
1 2010 MYSPACE @ 0 0 0 0 0
1 2010 MYSPACE MYQ2 0 0 0 0 0

To see the messages in queue, use command xadmin mqlm (list messages):

NDRX> mglm -s MYSPACE —-g MYQl
ndrxd PID (from PID file): 27208
Nd SRVID MSGID (STR/Base64 mod)

TSTAMP (UTC)

1 2010 UcnU2PgOTEQQGlRymbwFdwEA2gCcAAAAAAAAAAAAAAAA=
1 2010 +SFyfn64R9+t9UQKSwSeHWEA2gcAAAAAAAAAAAAAAAA=
1 2010 940Z3mwiQaKoEymTzoNigQEA2gcAAAAAAAAAAAAAAAA=
1 2010 1FX4KFvSSYy9k2Z3PxkKrQEA2gcAAAAAAAAAAAAAAAA=
1 2010 9iGWWgBfSFCYwnqlbHgKLAEA2gCcAAAAAAAAAAAAAAAA=

16-05-18
16=05=18
16-05-18
16-05-18
16=05=18

zZz2z 22

Persistent Message Queues Overview 13/18

2010 rPBQj4kaSEORMbsJIxxKikwEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13
2010 avfiUp5RQr2FgbgwnuBl7QEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13
2010 yTHuuY+cQkCjzKpHJjEplkwEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13
2010 B4yYdzoS5TsGTDS37yY7uHgEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13
2010 giD1TtTxSjyGlneROvOWrgEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13
2010 5T+ePpONSGSFGZ2wwRizOwEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13
2010 EvtBS42aQcgZxD3AfIwz5gEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13
2010 mgopdmchTv6YMS4VW68BCWEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13
2010 KU73LYkWQcCnTQu4OpKCBAEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13
2010 N4zPeDZ+QaydazuuPzI82QEA2gcAAAAAAAAAAAAAAAA= 16-05-18 11:55:13

I = T = T = S S SR S R Y
OO 000000 OO
Zzzzz2z=2z22 2

Lets say, we want to see what is in side of the first message, by using mgdm (dump message) command:

NDRX> mgdm -n 1 -i 2010 -m UcnU2PgOTEqgGlRymbwFdwEA2gcAAAAAAAAAAAAAAAA=
ndrxd PID (from PID file): 27208
kkhkkkkxxrxkhkhkhkkkk TPQCTL H**,kkxrhkhhkkhkk***
EX_QFLAGS 0

EX_QPRIORITY 0

EX_QDIAGNOSTIC O

EX_QURCODE 0

EX_QAPPKEY 0

EX_QDELIVERY_QOS 0
EX_QREPLY_QOS 0

EX_CLTID

EX_QREPLYQUEUE

EX_QFAILUREQUEUE

EX_ODIAGMSG

EX_QMSGID 0\c9\d4\dB8\£8\0eLJ\a0\1bTr\99\bc\05w\01\00\da <+
\N07\00\00\00\00\N00N\00N\NOONOONOONOONOONOO
EX_QCORRID

Ak khkhkhkhkhkhkhkhkkkkk MESSAGE **,*x**k*k*k*****

* Buffer type = CARRAY

UBF :4:32427:000:20160518:145737003:d_mgdm.c:0154:Binary message contents
0000 00 01 02 03 04 05 06 07 08 09 ...

NDRX>

So above sample does the hex dump of the binary message we enqueued. Lets say we want to move this message to MYQ2 so
that processes automatically (currently we do not have TESTSVC defined. so it will fail. But anyway lets try. To move message,
we can use mgmy (move) command.

NDRX> mgmv -n 1 -12010 -m UcnU2PgOTEqgGlRymbwFdwEA2gcAAAAAAAAAAAAAAAA= —-s MYSPACE —-g MYQ2
ndrxd PID (from PID file): 27208

Committed

NDRX> mglg

ndrxd PID (from PID file): 27208

Nd SRVID QSPACE ONAME #QUEU #LOCK #ENQ #DEQ #SUCC #FAIL
1 2010 MYSPACE MYQl 14 0 30 16 0 0

1 2010 MYSPACE MYQ2 0 0 1 1 0 1

1 2010 MYSPACE @ 0 0 0 0 0 0
NDRX>

So after a while, message did fail, it was dequeued and remove.
To remove message from q, it can be done by mgrm command, for example:

NDRX> mgrm -n 1 -1 2010 —m +SFyfn64R9+t9UQKSwbeHWEA2gcAAAAAAAAAAAAAAAA=
ndrxd PID (from PID file): 27208

Succeed

NDRX> mglg

ndrxd PID (from PID file): 27208

Nd SRVID QSPACE ONAME #QUEU 4LOCK #ENQ #DEQ #SUCC #FAIL

Persistent Message Queues Overview 14/18

1 2010 MYSPACE MYQ1 13 0 30 17 0 0
1 2010 MYSPACE MYQ2 0 0 1 1 0 1
1 2010 MYSPACE @ 0 0 0 0 0 0

So after removal only 13 messages have left in queue.

Persistent Message Queues Overview 15/18

Chapter 8

Runtime queue reconfiguration

If new queues needs to be defined or parameters of existing queues needs to be changed, you may use mgrc (reload config)
command. This sends request to all #mqueue server to re-read the config.

Meanwhile you may define new queue during the runtime (with out changing the config) or update existing one. Lets say we
want to change MYQ2 to manual queue. You may do this in following way by using mqgch (change) command:

NDRX> mgch -n 1 -i 2010 —-gMYQ2,autog=n
ndrxd PID (from PID file): 27208
Succeed

NDRX> mglc

ndrxd PID (from PID file): 27208

Nd SRVID QSPACE ONAME FLAGS QDEF

1 2010 MYSPACE @ @, svenm=-, autog=n, tries=0,waitinit=0, waitretry=0, <
waitretryinc=0,waitretrymax=0,mode=fifo

1 2010 MYSPACE MYQ1 MYQ1l, svenm=—, autog=n, tries=0,waitinit=0,waitretry=0, <>
waitretryinc=0,waitretrymax=0,mode=fifo

1 2010 MYSPACE MYQ2 MYQ2, svenm=TESTSVC, autog=n, tries=5,waitinit=1,waitretry ¢

=10,waitretryinc=5,waitretrymax=30,mode=1ifo

Persistent Message Queues Overview 16/18

Chapter 9

Further study

For more use cases the atmitests/test028_tmq can be analyzed. It contains test cases for supported EnduroX duarble queue
functionality.

Persistent Message Queues Overview

17/18

Chapter 10

Additional documentation

10.1 Internet resources

[1] [ATMI-API] http://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgint6.htm
[2] [FML-API] http://docs.oracle.com/cd/E13203_01/tuxedo/tux91/fml/index.htm
[3] [XADMIN-MANPAGE] man xadmin

[4] [Q.CONF-MANPAGE] man q.conf

[5] [TMQUEUE-MANPAGE] man tmqueue

http://docs.oracle.com/cd/E13203_01/tuxedo/tux71/html/pgint6.htm
http://docs.oracle.com/cd/E13203_01/tuxedo/tux91/fml/index.htm

Persistent Message Queues Overview 18/18

Chapter 11

Glossary

This section lists

ATMI

Application Transaction Monitor Interface

UBF
Unified Buffer Format it is similar API as Tuxedo’s FML

	Persistent queues
	How the persistent queues work?
	How to use EnduroX persistent queues
	tmqueue ATMI server configuration
	Queue configuration
	Sample ATMI client for enqueue & dequeue
	Managing the runtime
	Runtime queue reconfiguration
	Further study
	Additional documentation
	Internet resources

	Glossary

