
LIBNDRXXAPQ(8) i

LIBNDRXXAPQ(8)

LIBNDRXXAPQ(8) ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

LIBNDRXXAPQ(8) iii

Contents

1 SYNOPSIS 1

2 DESCRIPTION 2

3 CONNECTION PARAMETERS 3

4 EXTERNAL SYMBOLS 4

5 CONFIGURATION EXAMPLE 5

6 LIBPQ C EXAMPLE 6

7 SEE ALSO 9

8 COPYING 10

LIBNDRXXAPQ(8) 1 / 10

Chapter 1

SYNOPSIS

libndrxxapq.so libndrxxapq.dylib

NDRX_XA_RES_ID=1
NDRX_XA_OPEN_STR={"url":"tcp:postgresql://${EX_PG_HOST}/${EX_PG_DB}"

,"user":"${EX_PG_USER}"
,"password":"${EX_PG_PASS}"
,"compat":"PGSQL|INFORMIX|INFORMIX_SE"
}"

NDRX_XA_CLOSE_STR=$NDRX_XA_OPEN_STR
NDRX_XA_DRIVERLIB=libndrxxapq.so
NDRX_XA_RMLIB=-
NDRX_XA_LAZY_INIT=1

LIBNDRXXAPQ(8) 2 / 10

Chapter 2

DESCRIPTION

This is XA driver specifically written Enduro/X needs. It provides an XA switch emulation on top of PostgreSQL prepared
transactions. PostgreSQL by default does not support XA switch. Also when transaction start, there is no possibility to identify
the work unit performed. The identification of work done by some process on particular connection can be done by preparing
the transaction. Thus there is no such thing as "active" transaction in terms of XA specification. Also there is no possibility for
other processes to join the existing work and see work done by other session. Thus for example if one server process in same
transaction performs some insert and other process tries insert on table which has foreign key to first insert, it will fail, as FK will
not be seen. Thus Enduro/X needs to work on branch-transactions mode with out join feature. The mode of PostgreSQL driver
is the same as enabled by NDRX_XA_FLAG with value NOJOIN.

The emulation of XA protocol is done by following steps and assumptions:

1. When process joins to global transaction, new branch-transaction-id is acquired. The TMSRV logs the branch with status
u-unknown.

2. When process completes the work unit (server does tpreturn(3) or tpforward(3)) or initiating process performs tpcommit(3),
the xa_end() is called which in-turn runs PostgreSQL "PREPARE TRANSACTION <XID_STR>". "XID_STR" is based
on PosgreSQL JDBC driver format. Thus JDBC version on PQ versions of tmsrv drivers can be mixed. When transaction
is prepared OK, the TMSRV is reported with p-prepared status. If prepare fails, this means that transaction is aborted by
PosgreSQL, and in this case a-aborted status is reported to TMSRV.

3. When TMSRV tries to commit, and branch is in u-unknown or a-aborted status, the global transaction is aborted and tp-
commit caller receives TPEABORT error. If transaction is in status p, the prepare phase of global transaction is skipped/no
operation and then commit is executed.

4. In case if work unit performs too long operation and tries to xa_end() after when TMSRV is already timed-out/rolled back
the global transaction, the xa_end() status call to TMSRV fails with error TPEMATCH. In this case local process rolls
back the prepared transaction.

5. When tpabort is executed, the xa_end() within tpabort() process performs abort with out executing prepare.

The connection details are encoded in JSON based string which contains the database URL, user name and password.

To get connection handler, used tpgetconn(3) function. Which is available for this driver.

LIBNDRXXAPQ(8) 3 / 10

Chapter 3

CONNECTION PARAMETERS

url
This is standard PostgreSQL connection URL. Typically it contains database host, port and database name. The Enduro/X
standard environment variable substitution is used here.

LIBNDRXXAPQ(8) 4 / 10

Chapter 4

EXTERNAL SYMBOLS

ndrx_G_PG_conname
This is connection name currently associated with thread. It is thread is stored in thread local storage (TLS). Definition is
__thread char ndrx_G_PG_conname[65].

LIBNDRXXAPQ(8) 5 / 10

Chapter 5

CONFIGURATION EXAMPLE

When starting to use Enduro/X PQ XA Driver, ensure that PosgreSQL LIBPQ is installed.

The typical configuration is done as a standard Enduro/X XA resource configuration, which can be set directly in environment
variables or in [@global] section in application configuration (e.g. app.ini). This gives example of app.ini configuration.

Sample configuration app.ini for CCTAG DB1_PQ:

[@global/DB1_PQ]
NDRX_XA_RES_ID=1
NDRX_XA_OPEN_STR={"url":"postgresql://testuser:testuser1@localhost:5432/testdb"}
NDRX_XA_CLOSE_STR=${NDRX_XA_OPEN_STR}
NDRX_XA_DRIVERLIB=libndrxxapq.so
NDRX_XA_RMLIB=-
NDRX_XA_LAZY_INIT=1

Sample configuration of transaction manager in ndrxconfig.xml for CCTAG DB1_PQ:

<servers>
...
<server name="tmsrv">

<max>1</max>
<srvid>1650</srvid>
<cctag>DB1_PQ</cctag>
<sysopt>-e /tmp/tmsrv-dom1.log -r -- -t1 -l/tmp</sysopt>

</server>
...

</servers>

LIBNDRXXAPQ(8) 6 / 10

Chapter 6

LIBPQ C EXAMPLE

This is example of programming database with libpq.

File: test_expq.c

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <atmi.h>
#include <libpq-fe.h>

#define FAIL -1
#define SUCCEED 0

int main(int argc, char** argv)
{

PGconn * conn;
PGresult *res = NULL;
ExecStatusType estat;
int ret = SUCCEED;

/* open connection */
if (EXSUCCEED!=tpopen())
{

fprintf(stderr, "Failed to open: %s\n", tpstrerror(tperrno));
ret = FAIL;
goto out;

}

/* get the connection which was open by tpopen() */
conn = (PGconn *)tpgetconn();

/* create some table... */

res = PQexec(conn, "CREATE TABLE manextest(userid integer UNIQUE NOT NULL);");

estat = PQresultStatus(res);

if (PGRES_COMMAND_OK != estat)
{

char *state = PQresultErrorField(res, PG_DIAG_SQLSTATE);
char *msg = PQresultErrorField(res, PG_DIAG_MESSAGE_PRIMARY);

fprintf(stderr, "Failed to create table: state: [%s]: %s\n", state, msg);

if (0==strcmp(state, "42P07"))

LIBNDRXXAPQ(8) 7 / 10

{
fprintf(stderr, "Table already exist - ignore error\n");

}
else
{

ret = FAIL;
goto out;

}
}

/* start transaction */
if (EXSUCCEED!=tpbegin(60, 0))
{

fprintf(stderr, "Failed to begin: %s\n", tpstrerror(tperrno));
ret = FAIL;
goto out;

}

/* insert data */

PQclear(res);

res = PQexec(conn, "insert into manextest(userid) values ((select COALESCE(max(userid), ←↩
1)+1 from manextest));");

estat = PQresultStatus(res);

if (PGRES_COMMAND_OK != estat)
{

char *state = PQresultErrorField(res, PG_DIAG_SQLSTATE);
char *msg = PQresultErrorField(res, PG_DIAG_MESSAGE_PRIMARY);

fprintf(stderr, "Failed to create table: state: [%s]: %s\n", state, msg);
ret = FAIL;
goto out;

}

if (SUCCEED!=tpcommit(0))
{

fprintf(stderr, "TESTERROR: Commit OK, must fail!\n");
ret = FAIL;
goto out;

}

out:
if (SUCCEED!=ret)
{

tpabort(0);
}

tpclose();
tpterm();

}

Build the program with:

$ cc test_expq.c -o expqtest -I/usr/include/postgresql -lpq -latmi -lnstd -lubf -lrt

Run and test:

LIBNDRXXAPQ(8) 8 / 10

$./expqtest
Failed to create table: state: [42P07]: relation "manextest" already exists
Table already exist - ignore error

$ psql -U testuser -d testdb -h localhost

testdb=> select * from manextest;
userid

2
(1 row)

For more unit tests please see ’atmitest/test067_postgres’ unit test folder for
PQ source examples and configuration.

BUGS

Report bugs to support@mavimax.com

mailto:support@mavimax.com

LIBNDRXXAPQ(8) 9 / 10

Chapter 7

SEE ALSO

libndrxxaecpg(8) ndrxconfig.xml(5) tmsrv(8) libndrxxawsmqs(8) libndrxxaoras(8) tpgetconn(3)

LIBNDRXXAPQ(8) 10 / 10

Chapter 8

COPYING

© Mavimax, Ltd

	SYNOPSIS
	DESCRIPTION
	CONNECTION PARAMETERS
	EXTERNAL SYMBOLS
	CONFIGURATION EXAMPLE
	LIBPQ C EXAMPLE
	SEE ALSO
	COPYING

