
Enduro/X Java Internal Developer Guide i

Enduro/X Java Internal Developer Guide

Enduro/X Java Internal Developer Guide ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

1.0 2018-08 Initial draft MV

Enduro/X Java Internal Developer Guide iii

Contents

1 Intro 1

2 Installing Java JDK 2

2.1 CentOS/RHEL/Oracle Linux 6.X . 2

2.2 CentOS/RHEL/Oracle Linux 7.X . 2

2.3 CentOS/RHEL/Oracle Linux 8.X . 2

2.4 Ubuntu systems / Debian / Raspberry systems . 2

2.5 SLES 15: . 2

2.6 FreeBSD systems . 3

2.7 IBM AIX systems . 3

2.8 Solaris 10 and 11 . 3

3 Prepare Enduro/X for Build 4

3.1 Getting the source . 4

3.2 Getting the PostgreSQL JDBC driver . 4

3.3 Getting the Oracle JDBC Driver . 4

3.4 Update environment variables . 4

3.4.1 Ubuntu/Debian/Raspberry: . 5

3.4.2 For example on Oracle Linux 7: . 5

3.4.3 For Mac OS: . 5

3.4.4 Oracle Linux 8 with Java 11: . 5

3.4.5 Suse Enterprise Linux Server 15 (SLES): . 6

3.4.6 FreeBSD: . 6

3.4.7 IBM AIX with Java 8: . 6

3.4.8 Solaris 10 and 11 (X86): . 7

3.5 Preparing to build and build . 7

3.6 Enduro/X Java XA Test Configuration . 7

3.7 Configuration of Oracle DB tests . 8

3.8 Configuration of Posgresql DB tests . 8

3.9 Executing the unit tests . 8

Enduro/X Java Internal Developer Guide iv

4 General Enduro/X/Java concepts 9

5 Dynamic C libraries 12

6 Distributed transaction processing architecture 13

6.1 Transaction Manager operations with JDBC drivers . 14

7 Enduro/X Java XATMI Client process clean shutdown 15

8 NetBeans configuration - standard development IDE 16

8.1 Packages for Java . 16

8.2 Checking out Enduro/X Java project . 17

8.3 Opening projects in NetBeans . 18

8.4 Opening C project in NetBeans . 18

8.5 Opening Java project in NetBeans . 19

Enduro/X Java Internal Developer Guide 1 / 24

Chapter 1

Intro

This document is for external and internal purposes of the Enduro/X Java module developer. It can be used for building the
Enduro/X Java package for further use. Document also contains the notes for Enduro/X Java module developer.

It contains solutions for main pitfalls found during the development process. Also document contains main configuration steps
to get the development IDE working.

Document starts with approach of building the Enduor/X Java module for external use. Afterwards document describes the
process for preparing the IDE for internal module development process.

Enduro/X Java Internal Developer Guide 2 / 24

Chapter 2

Installing Java JDK

First of all to start using or developing Enduro/X Java language plugin, the JDK needs to be installed. Enduro/X supports JDK
version 1.7 and above.

2.1 CentOS/RHEL/Oracle Linux 6.X

To install the JDK for RHEL system, use following command:

yum install java-1.6.0-openjdk.x86_64 java-1.6.0-openjdk-devel.x86_64

2.2 CentOS/RHEL/Oracle Linux 7.X

To install the JDK for RHEL system, use following command:

yum install java-1.8.0-openjdk java-devel

2.3 CentOS/RHEL/Oracle Linux 8.X

To install the JDK for RHEL system, use following command:

yum install java-11-openjdk-devel

2.4 Ubuntu systems / Debian / Raspberry systems

$ sudo apt-get install default-jdk

2.5 SLES 15:

Example version:

$ sudo zypper install java-10-openjdk java-10-openjdk-devel

Enduro/X Java Internal Developer Guide 3 / 24

2.6 FreeBSD systems

$ sudo pkg install openjdk8

2.7 IBM AIX systems

Download desired java from: https://developer.ibm.com/javasdk/support/aix-download-service/ "Java Runtime Environment"
(JRE) and "Development Kit" is needed (JDK) e.g. Java8_64.sdk.8.0.0.541.tar.gz. This documents installs the new version
particularly on AIX 7.1. But it might be possible to use existing version of java on the host.

$ su - root

gunzip -c Java8_64.jre.8.0.0.541.tar.gz | tar -xvf-

gunzip -c Java8_64.sdk.8.0.0.541.tar.gz | tar -xvf-

installp -agXYd . Java8_64.jre Java8_64.sdk 2>&1 | tee installp.log

2.8 Solaris 10 and 11

See notes here: https://docs.oracle.com/javase/8/docs/technotes/guides/install/solaris_jdk.html#A1097833

Basically this manual uses manual install procedure:

su - root

gzip -dc jdk-8u202-solaris-x64.tar.gz | tar xf -

mv jdk1.8.0_202 /usr/jdk1.8

On Solaris 11.4 this way it can be done too:

$ sudo pkg install jdk-8

https://developer.ibm.com/javasdk/support/aix-download-service/
https://docs.oracle.com/javase/8/docs/technotes/guides/install/solaris_jdk.html#A1097833

Enduro/X Java Internal Developer Guide 4 / 24

Chapter 3

Prepare Enduro/X for Build

The preparation for build also includes the step of downloading PostgreSQL JDBC drivers, as these are used (if not disabled) for
testing purposes of the XA transactions. PostgreSQL database shall be already configured and users prepared. The preparation
process is described in building_guide(guides)(Building Enduro/X On GNU/Linux Platform, Testing PostgreSQL chapter). Also
note that environment variables in ~/ndrx_home must be configured i.e. EX_PG_HOST, etc. variables must be configured in
order the to establish the connection to database.

3.1 Getting the source

$ git clone https://github.com/endurox-dev/endurox-java
$ cd endurox-java

3.2 Getting the PostgreSQL JDBC driver

Download the corresponding version from https://jdbc.postgresql.org/download.html. For example version postgresql-42.2.6.jar.

By assuming that you are in the endurox-java folder:

$ cd tests/03_xapostgres/jdbcdrivers
$ wget https://jdbc.postgresql.org/download/postgresql-42.2.6.jar
$ mv postgresql-42.2.6.jar pgjdbc.jar

3.3 Getting the Oracle JDBC Driver

If using having Oracle DB installed and ready for testing, then JDBC driver must be installed too. This can be downloaded from
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

In the end, what Enduro/x needs is "ojdbc.jar" to be located in the project path:

$ ls -l endurox-java/tests/02_xaoracle/jdbcdrivers/ojdbc.jar

3.4 Update environment variables

Enduro/X Java module requires libjava.so and libjvm.so (and other OS counterparts), Thus the runtime library search path must
be set correspondingly. To execute the Enduro/X tests, the ~/ndrx_home source script must be updated:

NB! "find /usr . -name libjvm.so" may be used to find the JAVA_HOME and other folders.

https://jdbc.postgresql.org/download.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

Enduro/X Java Internal Developer Guide 5 / 24

3.4.1 Ubuntu/Debian/Raspberry:

$ vi ~/ndrx_home

Add:

Java settings
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.222.b10-0.el7_6.x86_64

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${JAVA_HOME}/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${JAVA_HOME}/lib/server
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/user1/modules/endurox-java/libsrc/c:/home/ ←↩

user1/modules/endurox-java/libexjlds

3.4.2 For example on Oracle Linux 7:

$ vi ~/ndrx_home

Add:

Java settings
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.222.b10-0.el7_6.x86_64

Add or update:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64/server
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/user1/modules/endurox-java/libsrc/c:/home/ ←↩

user1/modules/endurox-java/libexjlds

3.4.3 For Mac OS:

$ vi ~/ndrx_home

Add:

Java settings
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_221.jdk/Contents/Home

Add or update:
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/System/Library/Frameworks/ImageIO.framework/ ←↩

Versions/A/Resources:$JAVA_HOME/jre/lib
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:$JAVA_HOME/jre/lib/server
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/Users/user1/modules/endurox-java/libsrc/c:/ ←↩

Users/user1/modules/endurox-java/libexjlds

NOTE: that "..A/Resources:" must be before java library path, otherwise expect such errors as "Symbol not found __cg_jpeg_resync_to_restart".

3.4.4 Oracle Linux 8 with Java 11:

$ vi ~/ndrx_home

Add:

Enduro/X Java Internal Developer Guide 6 / 24

Java settings
export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-11.0.4.11-0.el8_0.x86_64

Add or update:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/lib/server
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/user1/modules/endurox-java/libsrc/c:/home/ ←↩

user1/modules/endurox-java/libexjlds

3.4.5 Suse Enterprise Linux Server 15 (SLES):

$ vi ~/ndrx_home

Add:

Java settings
export JAVA_HOME=/usr/lib64/jvm/java-10-openjdk-10

Add or update:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/lib/server
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/user1/modules/endurox-java/libsrc/c:/home/ ←↩

user1/modules/endurox-java/libexjlds

3.4.6 FreeBSD:

$ vi ~/ndrx_home

Add:

Java settings
export JAVA_HOME=/usr/local/openjdk8

Add or update:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64/server
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/user1/modules/endurox-java/libsrc/c:/home/ ←↩

user1/modules/endurox-java/libexjlds

3.4.7 IBM AIX with Java 8:

$ vi ~/ndrx_home

Add:

export JAVA_HOME=/usr/java8_64

Add or update:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/ppc64
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/ppc64/default
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/user1/modules/endurox-java/libsrc/c:/home/ ←↩

user1/modules/endurox-java/libexjlds

Enduro/X Java Internal Developer Guide 7 / 24

3.4.8 Solaris 10 and 11 (X86):

As CMake version 3.5 or higher is required by Java module, the upgrade of cmake must be installed. CSW Packages will be
installed from sources:

pkgadd -d http://get.opencsw.org/now
/opt/csw/bin/pkgutil -U
/opt/csw/bin/pkgutil -y -i cmake

Note that later cmake’s might require libs like "libCrunG3.so.1" which comes from compiler path, thus append the libpath.

$ vi ~/ndrx_home

Add:

export JAVA_HOME=/usr/jdk1.8

Add or update:
Fix missing libCrunG3.so.1 for cmake
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/solarisstudio12.4/lib

#
For x86_64 add:
#
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64/server

#
For Sparc add:
#
#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/sparcv9
#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/sparcv9/server

#
Continue with both:
#
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/export/home/user1/modules/endurox-java/libsrc/c:/ ←↩

export/home/user1/modules/endurox-java/libexjlds
export PATH=$PATH:$JAVA_HOME/bin

3.5 Preparing to build and build

Before we start to build, lets load the environment, so that cmake can properly resolve the Java resources (via JAVA_HOME).

$. ~/ndrx_home
$ cd endurox-java
$ cmake .
$ make

3.6 Enduro/X Java XA Test Configuration

In order to perform testing of Oracle (02_xaoracle) and Posgresql (03_xapostgres) the databases and environment must be
configured.

The environment contains host names, users, passwords and database names. The build process will automatically skip these
tests, if environment is not configured.

Enduro/X Java Internal Developer Guide 8 / 24

Database configuration (users, environment variables) are configured as part of the building_guide(guides)(Enduro/X Building
Guide, Enduro/X basic Environment configuration for HOME directory).

3.7 Configuration of Oracle DB tests

Once the Oracle environment is configured, the test database tables must be created. that could be done in following way
(assuming that ~/ndrx_home is properly set):

$ source ~/ndrx_home

$ cd endurox-java/tests/02_xaoracle/conf

$./sqlplus.run

SQL> @tables.sql

Table created.

After this, system is ready for Oracle DB Unit tests.

3.8 Configuration of Posgresql DB tests

To configure PostgreSQL for Java tests, corresponding database tables for test scenarios must be created. If the environment is
properly configured, then table creation can be done in following way:

$ source ~/ndrx_home

$ cd endurox-java/tests/03_xapostgres/conf

$ cat tables.sql | ./psql.run
CREATE TABLE

Now PosgreSQL database is ready for Enduro/X Java tests.

3.9 Executing the unit tests

To execute module tests, the environment, database tables, etc shall be created as written before. Once all is ready, the tests can
be executed in following way:

$ cd endurox-java/tests
$./run.sh

Enduro/X Java Internal Developer Guide 9 / 24

Chapter 4

General Enduro/X/Java concepts

The object hierarchy is as follows (Class diagram):

Enduro/X Java Internal Developer Guide 10 / 24

Not all classes are mentioned in this diagram, such as exception and other utility classes. But they key access class to Enduro/X
APIs are org.endurox.AtmiCtx. For this class is associated with Enduro/X XATMI client or servers session. Also needs to keep
in mind that for one process, there shall be only one XATMI server. Thus AtmiCtx.tprun() shall be called only from single Java
thread. Java XATMI client session in turn can be created as much as needed.

In the background of whole java module, following key principles are used:

• All meta data: Classes, Methods and Fields are cached, for performance reasons.

• Enduro/X thread local storage are used for running in C side during Java calls, Special function ndrx_ctx_priv_get() is used to
retrieve generic TLS fields where data such as Java env, Java ATMI Context object reference, ptr to self C context.

Enduro/X Java Internal Developer Guide 11 / 24

• When call from Java is made to C and when in turn C calls back Java (for XA and Java XATMI servers) processing, these
global variables are used.

Key concepts of the Enduro/X Java package can be seen in following figure:

Enduro/X Java Internal Developer Guide 12 / 24

Chapter 5

Dynamic C libraries

Enduro/X Java C binding code consists of the following libraries:

• libexjava.so - main java Enduro/X binding code. This translates all java attributes from JNI interface to standard XATMI C
interface.

• libexjavald.so - this is wrapper library of the libexjava.so. Loaded by java. The wrapper is needed for reason of the way in
which java loads the libexjava.so by System.loadLibrary(). The symbols are not loaded into global process address space
(i.e. with out RTLD_GLOBAL). Thus when XA transactions are used, the libndrxxajdbc.so is loaded by Enduro/X which in
turn tries to access resources from libexjava.so (which exposes JDBC XA API). This this results in fact that XA API is not
visible from such C code. Thus to avoid this, the libexjavald.so is introduced which loads the libexjava.so into global address
space, and redirects the JNI calls to libexjava.so. The redirect code is generated by genwrap.pl script. The script parses the
JNI header files to extract the function signatures and generates the corresponding proxy code to libexjava.so.

• libndrxxajdbc.so

Enduro/X Java outer classes are supported by C backend which binds the Java calls to actual XATMI C calls. Normally native
libraries are loaded System.loadLibrary() java method. And it would be epex

Enduro/X Java Internal Developer Guide 13 / 24

Chapter 6

Distributed transaction processing architecture

The nice thing about Java is that their JDBC drivers, are that they provide two phase commit interfaces. The basic principle for
the operations are the same which are used by X/Open XA interface. See https://docs.oracle.com/javaee/5/api/javax/transaction/-
xa/XAResource.html.

Enduro/X by it self uses following architecture for the XA two phase transactions, thus bindings added to Java shall support XA
transactions too. There are known "standard" java APIs for this like JTA, but Enduro/X brings as close as possible XATMI API
To Java, thus transactions are managed by XATMI API, which basically consists of following methods:

• AtmiCtx.tpopen - Configure resource manager, create instance of XAResource and XAConnection associated with ATMI
Context

• AtmiCtx.tpclose - Disconnect from resource manager, delete XAResource and XAConnection associated with ATMI Context

• AtmiCtx.tpbegin - Start the transaction

• AtmiCtx.tpsuspend - Suspend current transaction, put context outside of any transaction

• AtmiCtx.tpresume - Resume suspend transaction, put context back into global transaction

• AtmiCtx.tpcommit - Commit the transaction

• AtmiCtx.tpabort - Abort current transaction

• AtmiCtx.tpgetconn - get connect object from XAConnection. The pooling and closing of connection shall done by programmer.

The transaction management, communications with transaction manager (Enduro/X tmsrv binary are performed by Enduro/X
C libraries, but due to fact that JDBC drivers live in Java side, the callbacks from C are done back to Java. To get things more
complex, Enduro/X uses standard approach of loading XA drivers from C side shared library. Once Enduro/X Core together
with Java modules are booted, they are not aware of users willing to use JDBC, in fact Enduro/X Core does not know anything
about JDBC. But Enduro/X Java module provides special library named "libndrxxajdbc.so" (our corresponding counter part for
MacOS), which in turn expects in "NDRX_XA_RMLIB" (resource managers) configuration parameter expects "libexjava.so" to
set. The libexjava.so provides handler to resolve the XA Switch. At startup static XADataSource is initialized. The initialization
is done by parsing JSON configuration string found in NDRX_XA_OPEN_STR. The syntax for Open String is following

{"class":"<JDBC Driver Class Name>",
"set": {

"<Set Method Of Class Object 1>":"<Value to bet set 1>"
,"<Set Method Of Class Object 2>":"<Value to bet set 2>"
,"<Set Method Of Class Object N>":"<Value to bet set N>"
,"<Set Method of Properties 1": {

"<Property 1 Setting 1>":"<Value to bet set 1/1>"
"<Property 1 Setting N>":"<Value to bet set 1/N>"

}
}

}

https://docs.oracle.com/javaee/5/api/javax/transaction/xa/XAResource.html
https://docs.oracle.com/javaee/5/api/javax/transaction/xa/XAResource.html

Enduro/X Java Internal Developer Guide 14 / 24

Thing is that Configuration of XA JDBC Drivers are not standard. There is no standard set of XADataSource methods to
configure the driver. Thus Enduro/X uses generic approach to create driver instance and configure it via JSON configuration
string. This string accepts:

1. Class name (NOTE! The JDBC driver must be loaded either via linkage or by classpath)

2. A group of set method names and their values. The value types accepted are: Short, Long, Integer, Byte, Float, Double,
Boolean, String. The values for these data types are parsed as strings.

3. An setter method accepting java.util.Properties, accepts JSON sub-objects with string values.

And example of XA Open String is following (used by Oracle thin JDBC Driver):

[@global/DB1_JDBC]
NDRX_XA_RES_ID=1
NDRX_XA_OPEN_STR={"class":"oracle.jdbc.xa.client.OracleXADataSource",

"set": {
"setUser":"${EX_ORA_USER}"
,"setPassword":"${EX_ORA_PASS}"
,"setURL":"jdbc:oracle:thin:@${EX_ORA_HOST}:${EX_ORA_PORT}/${EX_ORA_SID}"
,"setConnectionProperties":{

"defaultRowPrefetch":"2"
,"oracle.jdbc.TcpNoDelay":"true"

Number in milliseconds
,"oracle.jdbc.ReadTimeout":"6000"
}

}
}

NDRX_XA_CLOSE_STR=${NDRX_XA_OPEN_STR}
NDRX_XA_DRIVERLIB=${NDRX_APPHOME}/../../xadrv/libndrxxajdbc.so
NDRX_XA_RMLIB=${NDRX_APPHOME}/../../libsrc/c/libexjava.so
NDRX_XA_LAZY_INIT=1

The XADataSource is configured during the XATMI Startup or during the first XA call (if lazy init is used).

6.1 Transaction Manager operations with JDBC drivers

Enduro/X transaction manager tmsrv(8), is not aware of the Java. The only thing it processes is XA Driver loaded by NDRX_XA_DRIVERLIB
configuration parameter. Which in turn provides the Enduro/X Java binding module libexjava.so found in NDRX_XA_RMLIB.
The JDBC XA library finds out that this is not java which initiated driver loading, thus new Java Virtual Machine instance is
created and hosted within tmsrv. VM is configured with settings form [@java] (with CCTAG support) section. Thus there shall
be class path configured with -cp or -classpath settings in Java opts. From this class path further the JDBC XA Data Source class
is loaded.

Enduro/X Java Internal Developer Guide 15 / 24

Chapter 7

Enduro/X Java XATMI Client process clean shut-
down

The standard java shutdown signal handling does not work well in the Enduro/X Java environment, i.e. "Runtime.getRuntime().addShutdownHook()".
Problem is that java may receive signal at any time at any thread. Even if thread is the Enduro/X C libraries. Such signal can
damage the system calls Enduro/X is doing, or this might interrupt/corrupt some java environmental settings at C side, due to
executing Java code on the signal arrival. Thus the segmentation faults, etc can be received during such shutdown approach.

To avoid these problems, Enduro/X offers its own mechanisms for receiving the shutdown notifications. The mechanism is to
install the runnable object in the C runtime. At the installation time, the signal handlers are re-configured and new thread is
standard which monitors the arrival of the following signals:

• SIGTERM

• SIGINT

• SIGHUP

Once any of these signals are received, the java.lang.Runnable callback is executed. Next step is for user application to terminate
properly e.g setting some global termination flag or any other mechanism.

To active the shutdown signal monitor thread, use the org.endurox.AtmiCtx.installTermSigHandler()) static method.

Enduro/X Java Internal Developer Guide 16 / 24

Chapter 8

NetBeans configuration - standard development
IDE

For Enduro/X and other related modules, NetBeans is preferred IDE for development. As module is programmed in Java and C
languages, two projects in NetBeans are required. As NetBeans does not allow to project to co-exist in the same folder, some
play with symbolic links into separate folder are required. This document will guide you for setting up the environment for
developing Enduro/X for Java.

8.1 Packages for Java

This document assumes that NetBeans for C/C++ are installed. Thus to get Java projects working, following additional plugins
must be installed. As plugins require JDK to be present for NetBeans, the IDE must be started with --jdkhome attribute. In
particular case NetBeans 8.2 was installed on Linux Mint Mate 19 as a root. For this document we will use "java-8-openjdk-
amd64".

$ /usr/local/netbeans-8.2/bin/netbeans --jdkhome /usr/lib/jvm/java-8-openjdk-amd64

Once NetBeans are started, go to: Tools > Plugins > Available Plugins and select following ones for install:

Enduro/X Java Internal Developer Guide 17 / 24

Once modules are installed, it is recommended to update the NetBeans launcher shortcut, because the jdkhome argument is
mandatory in order to use java projects

8.2 Checking out Enduro/X Java project

With this step we will prepare two folders for the project. The first one is default project folder "endurox-java" checked out from
source repository. The second one (which will be actually used by Java part for NetBeans) is created. And symbolic links are
added

$ mkdir endurox-j
$ cd endurox-j
$ ln -s ../endurox-java/build.xml .
$ ln -s ../endurox-java/tests .
$ ln -s ../endurox-java/libsrc .

Enduro/X Java Internal Developer Guide 18 / 24

8.3 Opening projects in NetBeans

The main project is "endurox-java" which is processed by CMake. The CMake build performs building of all parts Java and C.
But for IDE we open this project for as the C project.

8.4 Opening C project in NetBeans

Before opening the project in NetBeans, the cmake shall be run from shell, so that it performs initial configuration, as with
NetBeans the configuration is little bit different:

$ cd endurox-java
$ cmake .

After this step is done, start the NetBeans, and create new project with existing source code:

And then select the folder which checked out sources:

Enduro/X Java Internal Developer Guide 19 / 24

8.5 Opening Java project in NetBeans

The Java project shall be based on folder where symlinks are produced. That is "endurox-j" folder. The project type is "Standard"
Java free-form project. The project contains an Ant script which is not normally used for build purposes, but that is used for
NetBeans (or Eclipse) to parse the project structure (CMake is not supported yet for Java projects). Also during the development
the ant script (endurox-java/build.xml) must be maintained.

Create a new project:

Enduro/X Java Internal Developer Guide 20 / 24

Select project folder:

Enduro/X Java Internal Developer Guide 21 / 24

Ant commands:

Enduro/X Java Internal Developer Guide 22 / 24

Ant next screen is significant one, as here all Java directories must be manually added, as the libsrc only is added by default. All
unit tests which will be changed/added during the development must be added here:

Once project is created, this list can be altered in project properties > Java Sources

Also the class path shall include the Junit JARS. The next screen shows how to do it when project is configured, but that can be
done during the initial wizard too.

If adding new sources folder get similar message like this (Package folder already used in project):

Enduro/X Java Internal Developer Guide 23 / 24

Then this probably is caused by "endurox-java" C project. There is nothing to do in such case except to go and manually edit the
NetBeans project file in

endurox-j/nbproject/project.xml and add the necessary source folders to project, in similar way as other source folders are
added.

The class path attributes:

Enduro/X Java Internal Developer Guide 24 / 24

	Intro
	Installing Java JDK
	CentOS/RHEL/Oracle Linux 6.X
	CentOS/RHEL/Oracle Linux 7.X
	CentOS/RHEL/Oracle Linux 8.X
	Ubuntu systems / Debian / Raspberry systems
	SLES 15:
	FreeBSD systems
	IBM AIX systems
	Solaris 10 and 11

	Prepare Enduro/X for Build
	Getting the source
	Getting the PostgreSQL JDBC driver
	Getting the Oracle JDBC Driver
	Update environment variables
	Ubuntu/Debian/Raspberry:
	For example on Oracle Linux 7:
	For Mac OS:
	Oracle Linux 8 with Java 11:
	Suse Enterprise Linux Server 15 (SLES):
	FreeBSD:
	IBM AIX with Java 8:
	Solaris 10 and 11 (X86):

	Preparing to build and build
	Enduro/X Java XA Test Configuration
	Configuration of Oracle DB tests
	Configuration of Posgresql DB tests
	Executing the unit tests

	General Enduro/X/Java concepts
	Dynamic C libraries
	Distributed transaction processing architecture
	Transaction Manager operations with JDBC drivers

	Enduro/X Java XATMI Client process clean shutdown
	NetBeans configuration - standard development IDE
	Packages for Java
	Checking out Enduro/X Java project
	Opening projects in NetBeans
	Opening C project in NetBeans
	Opening Java project in NetBeans

